GAMMA VE BC GEÇİŞ MODELLERİNİN DIŞ AKIŞLAR İÇİN DEĞERLENDİRİLMESİ VE KARŞILAŞTIRILMASI

Laminer akıştan türbülanslı akışa geçişin modelleri, yenilenebilir enerji, İHA teknolojileri ve benzeri havacılık uygulamaları alanındaki son gelişmeler nedeniyle yeniden popüler haline gelmiştir. Laminer akıştan türbülansa geçişin HAD analizlerinde modellenmesi oldukça zor bir konudur. Geçiş bölgesi ihmal edilirek HAD çözümlerinde akışın tamamen türbülanslı olduğu varsayılırsa sürükleme kuvveti gerçeğinden fazla tahmin edilir. Bu durum, akışın temel özelliklerinin gözden kaçırılmasına ve akış alanının yanlış tahmin edilmesine neden olmaktadır. En popüler geçiş modelleri SST türbülans modeline uygulanan Menter modelleri ve Spalart-Almaras modeline uygulanan Baş-Çakmakçıoğlu (BC) modelidir. Bu çalışmada, Menter'in daha sade ama daha popüler olan γ modeli ve Baş Çakmakçıoğlu modellerinin dış akışlaradaki performansına odaklanılmıştır. γ modeli, harici akışlarda uygulanmasını zorlaştıran yerel türbülans yoğunluğuna dayanmaktadır. Bu zorluk, türbülans azalması ile geçiş başlangıcı arasındaki karmaşık ilişkiden kaynaklanmaktadır. BC geçiş modeli ise serbest akış türbülans yoğunluğunu kullanmaktadır. Her iki model de Klebanoff ve ERCOFTAC düz levha deney verileri ve iki boyutlu harici akış deney verisi kullanılarak doğrulanmıştır. Yüzey sürtünme katsayısı sonuçları deneysel verilerle karşılaştırılır. Sonuçlar, her iki modelin de türbülans geçişini çok benzer şekilde tahmin ettiğini göstermektedir. BC geçiş modeli hesaplama açısından γ modelinden daha ucuz ve uygulaması daha kolaydır. Ayrıca, γ modeli sınır koşullarının pratik olarak belirlenmesindeki belirsizlikten muzdariptir.

ASSESSMENT AND COMPARISON OF THE GAMMA AND BC TRANSITION MODELS FOR EXTERNAL FLOWS

Modelling of transition from the laminar to turbulent flow became a hot topic due to recent developments in renewable energy, UAV technologies and similar aerospace applications. The transition from laminar flow to turbulence is challenging to model in CFD analysis. The drag is overestimated if the transition is neglected in CFD solutions by assuming the flow is fully turbulent. This results in missing the fundamental characteristics of the flow and inaccurate predictions of the flow field. The most popular transition models are Menter's models applied to the SST turbulence model and the Baş-Çakmakçıoğlu (BC) transition model applied to the Spalart-Almaras model. We have focused on Menter's simpler but more popular γ model and Baş Çakmakçıoğlu models. The γ model relies on the local turbulence intensity, which makes applying the model challenging in external flows. This difficulty stems from the complex relationship between turbulence decay and transition onset. BC transition model utilizes the free stream turbulence intensity. Both models are verified using the Klebanoff and ERCOFTAC flat plate cases and several 2D external flow cases. Skin friction coefficient results are compared to experimental data. Results show that both models predict transition very similarly. BC model is computationally cheaper and easier to implement than the γ model. Also, γ model suffers from boundary conditions ambiguity.

___

  • Bas, Onur, Cakmakcioglu, Samet C, & Kaynak, Unver. 2013. A novel intermittency distribution-based transition model for low-re number airfoils. Page 2531 of: 31st AIAA applied aerodynamics conference.
  • Cakmakcioglu, Samet C, Bas, Onur, Mura, Riccardo, & Kaynak, Unver. 2020. A revised one-equation transitional model for external aerodynamics. Page 2706 of: AIAA Aviation 2020 Forum.
  • Cakmakcioglu, Samet Caka, Bas, Onur, & Kaynak, Un- ver. 2018. A correlation-based algebraic transition model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(21), 3915–3929.
  • Cho, Ji Ryong, & Chung, Myung Kyoon. 1992. A k—ε—γ equation turbulence model. Journal of Fluid Mechanics, 237, 301–322.
  • Dhawan, SJ, & Narasimha, R. 1958. Some properties of boundary layer flow during the transition from laminar to turbulent motion. Journal of Fluid Mechanics, 3(4), 418–436.
  • Dikbaş, E, and Baran ÖU. 2022, Implementation, verification and assessment of vortex capturing capabilities of k-kl turbulence model., Isı Bilimi ve Tekniği Dergisi 42 (1), 113-122.
  • Duru, C, Alemdar H, and Baran ÖU. 2021 CNNFOIL: Convolutional encoder decoder modeling for pressure fields around airfoils., Neural Computing and Applications 33 (12) 6835-6849.
  • Emmons, Howard W. 1951. The laminar-turbulent transition in a boundary layer-Part I. Journal of the Aeronautical Sciences, 18(7), 490–498.
  • Frei, Walter. 2013. Which Turbulence Model Should I Choose for My CFD Application? URL https://www. comsol. com/blogs/which-turbulence-model-should-choose-cfd-application/. accessed (2023): 03-20.
  • Jones, W Poo, & Launder, BrnE. 1973. The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 16(6), 1119–1130.
  • Kaynak, Unver, Bas, Onur, Cakmakcioglu, Samet Caka, & Tuncer, Ismail Hakki. 2019. Transition modeling for low to high speed boundary layer flows with CFD applications. In: Boundary layer flows-theory, applications and numerical methods. intechopen.
  • Langtry, Robin B, & Menter, Florian R. 2009. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA journal, 47(12), 2894–2906.
  • Langtry, Robin Blair. 2006. A correlation-based transition model using local variables for unstructured parallelized CFD codes.
  • Langtry, Robin Blair, Menter, FR, Likki, SR, Suzen, YB, Huang, PG, & Völker, S. 2006b. A correlation-based transition model using local variables—part II: test cases and industrial applications.
  • Mayle, RE, & Schulz, A. 1996. The path to predicting bypass transition. Page V001T01A065 of: Turbo Expo: Power for Land, Sea, and Air, vol. 78729. American Society of Mechanical Engineers.
  • Mayle, Robert Edward. 1991. The 1991 IGTI scholar lecture: the role of laminar-turbulent transition in gas turbine engines.
  • McGhee, Robert J. 1988. Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley low-turbulence pressure tunnel. Vol. 4062. National Aeronautics and Space Administration, Scientific and Technical. 55
  • Menter, Florian R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598–1605.
  • Menter, Florian R, Kuntz, Martin, & Langtry, Robin. 2003. Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, 4(1), 625–632.
  • Menter, Florian R, Langtry, Robin Blair, Likki, SR, Suzen, YB, Huang, PG, & Völker, S. 2006a. A correlation-based transition model using local variables—part I: model formulation.
  • Menter, Florian R, Smirnov, Pavel E, Liu, Tao, & Avancha, Ravikanth. 2015. A one-equation local correlation-based transition model. Flow, Turbulence and Combustion, 95(4), 583–619.
  • Menter, FR, & Langtry, RB. 2012. Transition Modelling for Turbomachinery Flows. Low Reynolds Number Aerodynamics and Transition, 31–58.
  • Menter, FR, Esch, T, & Kubacki, S. 2002. Transition modelling based on local variables. Pages 555–564 of: Engineering Turbulence Modelling and Experiments 5. Elsevier.
  • Menter, FR, Langtry, R, & Völker, S. 2006b. Transition modelling for general purpose CFD codes. Flow, turbulence and combustion, 77(1), 277–303.
  • Nichols, Robert H. 2010. Turbulence models and their application to complex flows. University of Alabama at Birmingham, Revision, 4, 89.
  • Savill, AM. 1993. Some recent progress in the turbulence modelling of bypass transition. Near-wall turbulent flows, 829–848.
  • Schubauer, Galen B, & Klebanoff, Philip S. 1955. Contributions on the mechanics of boundary-layer transition. Tech. rept.
  • Smith, Apollo Milton Olin. 1956. Transition, pressure gradient and stability theory. Douglas Aircraft Co., Report ES 26388.
  • Somers, Dan M. 1997. Design and experimental results for the S809 airfoil. Tech. rept. National Renewable Energy Lab.(NREL), Golden, CO (United States).
  • Steelant, Johan, & Dick, Erik. 2001. Modeling of laminar- turbulent transition for high freestream turbulence. J. Fluids Eng., 123(1), 22–30.
  • Suzen, Y, & Huang, P. 2000. An intermittency transport equation for modeling flow transition. Page 287 of: 38th Aerospace Sciences Meeting and Exhibit. 57
  • Walters, D Keith, & Cokljat, Davor. 2008. A three- equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow. Journal of fluids engineering, 130(12).
  • Wang, Jiang-Sheng, & Wang, Jin-Jun. 2021. Wake-induced transition in the low-Reynolds-number flow over a multi-element airfoil. Journal of Fluid Mechanics, 915.