Exergetic, exergoeconomic and sustainability assessments of piston-prop aircraft engines

Bu çalışmada, piston-prop uçak motorlarının ekserji, ekserjoekonomi ve sürdürülebilirlik yönleri kapsamlı bir şekilde gözden geçirilmiştir. Bu analiz ve değerlendirme araçları, 4-zamanlı, hava soğutmalı, 4-silindirli ve doğal emişli bir piston-prop uçak motoruna, uçuş operasyonunun bir bölümü olan iniş–kalkış (LTO) safhasında uygulanmıştır. LTO safhası; kalkış, tırmanma, yaklaşma ve taksi olmak üzere dört fazdan oluşur. Enerji analizi sonuçları, 111.90 kW ile en yüksek iş akımına ihtiyaç duyulan fazın kalkış olduğunu göstermiştir. Aynı fazda, yakıt enerji ve ekserji akımlarının da, sırasıyla 444.30 kW ve 476.51 kW değerleriyle, en yüksek olduğu görülmüştür. En düşük enerji ve ekserji kayıpları taksi fazında bulunurken, en yüksek enerji ve ekserji verimleri sırasıyla %26.76 ve %24.95 olarak tırmanma fazında bulunmuştur. Maliyet analizleri sonucunda, taksi fazının en yüksek ekserji yıkım maliyetine sahip olduğu görülmüştür. Bu değerler, sabit ürün yaklaşımıyla 23.41 $/h olarak hesaplanırken, sabit yakıt yaklaşımıyla 2.96 $/h olarak hesaplanmıştır. En yüksek sürdürülebilirlik indeksi (SI) ise 1.332 ile tırmanma fazında bulunmuştur.

Piston-prop uçak motorlarının ekserjetik, ekserjoekonomik ve sürdürülebilir değerlendirilmesi

In this study, the exergetic, exergoeconomic, and sustainability aspects of piston-prop aircraft engines are comprehensively reviewed. These analysis and assessment tools are applied to a four-cylinder, spark ignition, naturally aspirated and air-cooled piston-prop aircraft engine in the landing and takeoff (LTO) phases of flight operations. LTO consists of four parts: takeoff, climb out, approach, and taxi. The results of energy analysis indicate that takeoff is a phase requiring high power with a maximum work rate of 111.90 kW. Maximum fuel energy and exergy rates are calculated to be 444.30 kW and 476.51 kW, respectively. The minimum total loss is found in the taxi phase, while maximum energy and exergy efficiency values are 26.76% and 24.95% in the climb out phase, respectively. Based on the results of the cost analysis, the taxi has the maximum exergy destruction cost rate with 23.41 $/h at a fixed production and 2.96 $/h at a fixed fuel. Maximum sustainability index (SI) is found to be 1.332 at the climb out phase.

___

  • Abu-Nada, E., Al-Hinti, I., Akash, B. and Al-Sarkhi, A., Thermodynamic Analysis of Spark-ignition Engine Using A Gas Mixture Model for the Working Fluid, International Journal of Energy Research, 31, 1031- 1046, 2007.
  • Bejan A., Tsatsaronis G. and Moran M., Thermal Design and Optimization, John Wiley & Sons, New York, 1996.
  • Bejan, A. and Siems, D.L., The Need for Exergy Analysis and Thermodynamic Optimization in Aircraft Development, International Journal of Exergy, 1(1), 14- 24, 2001.
  • Caliskan, H., Tat, M.E. and Hepbasli, A., Performance Assessment of An Internal Combustion Engine at Varying Dead (Reference) State Temperature, Applied Thermal Engineering, 29(16), 3431-3436, 2009.
  • Cengel, Y.A. and Boles, M.A., Thermodynamics: An Engineering Approach, (Fifth Ed.), McGraw-Hill, New York, 2006.
  • Crane, D., Aviation Maintenance Technical Series: Powerplant, (Second Ed.), Aviation Supplies & Academics Inc., Washington, 2005.
  • Dincer I. and Rosen M.A., Exergy: Energy Environmental and Sustainable Development, Elsevier, 2007.
  • El-sayed, A.F., Aircraft Propulsion and Gas Turbine Engines, CRS Taylor & Francis, 2008.
  • Etele, J. and Rosen, M.A., Sensitivity of Exergy Efficiencies of Aerospace Engines to Reference Environmental Selection, International Journal of Exergy, 1(2), 91-99, 2001.
  • FACO (Federal Office of Civil Aviation). Official website,http://www.bazl.admin.ch/fachleute/lufttechnik/ entwicklung/00653/00764/index.html?lang=en/ (Accessed on 30 March 2010).
  • Figliola, R.S. and Tipton, R., An Exergy-Based Methodology for Decision-Based of Integrated Aircraft Thermal Systems, SAE, World Aviation Congress & Exposition, 2000-01-5527,
  • Figliola, R.S., Tipton, R. and Li, H., Exergy Approach to Decision-Based Design of Integrated Aircraft Thermal Systems, Journal of Aircraft, 40(1), 49-55, 2003.
  • Gunston, B., Development of Piston Aero Engines, (Second Ed.), J.H. Haynes & Co. Ltd., Sparkford, 1999.
  • Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
  • Hiereth, H. and Prenninger, P., Charging the International Combustion Engine (Powertrain), Springer, New York, 2007.
  • ICAO Secretariat, Airport Air Quality Guidance Manual, (Report No. Doc 9889), 2007.
  • Jenkinson, L. R. and Marchman, J. F., Aircraft Design Projects, Elsevier Science & Technology, USA, 2003.
  • Kopac, M. and Kokturk, L., Determination of Optimum Speed of An Internal Combustion Engine by Exergy Analysis, International Journal of Exergy, 2(1), 40-54, 2005.
  • Kotas, T.J., The Exergy Method of Thermal Plant Analysis, Krieger Publishing Company, Malabar, FL, 1995.
  • Kroes, M.J. and Wild, T.W., GLENCOE Aviation Technology Series: Aircraft Powerplants, (Seventh Ed.), McGraw-Hill, New York, 1995.
  • Leo, T.J. and Pérez-Grande, I., A Thermoeconomic Analysis of a Commercial Aircraft Environmental Control System, Applied Thermal Engineering, 25, 309- 325, 2005.
  • Lycoming. After Engine Exchange Price List, Official website, http://www.lycoming.textron.com/utility/ global-resources/2010-Aftermarket-Engine-Price- List.pdf./ (Accessed on 30 March 2010).
  • Moorhouse, D. J., Proposed System-Level Multidisciplinary Analysis Technique Based on Exergy Methods, Journal of Aircraft, 40(1), 11-15, 2003.
  • Moran, M.J. and Shapiro, H.N., Fundamental of Engineering Thermodynamics, (Thirth Ed.), John Wiley & Sons, New York, 2000.
  • Muñoz, J.R. and von Spakovsky, M.R., Decomposition in Energy System Synthesis/Design Optimization for Stationary and Aerospace Applications, Journal of Aircraft, 40(1), 35-42, 2003.
  • Orhan, M.F., Dincer, I. and Rosen, M.A., An Exergy- Cost-Energy-Mass Analysis of A Hybrid Copperchlorine Thermochemical Cycle for Hydrogen Production, International Journal of Hydrogen Energy, 35(10), 4831-4838, 2010.
  • Pellegrini, L.F., Gandolfi, R. and Silva, G.A.L., Exergy Analysis as A Tool for Decision Making in Aircraft Systems Design, Conference Proceedings, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
  • Periannan, V., von Spakovsky, R. and Moorhouse, D.J., A Study of Various Energy- and Exergy-Based Optimization Metrics for the Design of High Performance Aircraft Systems, The Aeronautical Journal, 112(1134), 449-458, 2008.
  • Pulkrabek, W. W., Engineering Fundamentals of the Internal Combustion Engine, Prentice Hall, USA, 1997.
  • Rakopoulos, C.D., Evaluation of A Spark Ignition Engine Cycle Using First and Second Law Analysis Techniques, Energy Conversion and Management, 34(12), 1299-1314, 1993.
  • Raymer, D. P., Aircraft Design: A Conceptual Approach, (Fourth Ed.), AIAA Education Series, Virginia, 2006.
  • Rosen, M.A. and Dincer, I., Exergy–Cost–Energy–Mass Analysis of Thermal Systems and Processes, Energy Conversion and Management, 44, 1633 – 1651, 2003.
  • Rosen, M.A. and Etele, J., Aerospace Systems and Exergy Analysis: Applications and Methodology Development Needs, International Journal of Exergy, 1(4), 411-425, 2004.
  • Roth, B. and Mavris, D., A Work Availability Perspective of Turbofan Engine Performance, American Institute of Aeronautics and Astronautics, AIAA publication, No. 0391, 2001.
  • Roth, B., McDonald, R. and Mavris, D., A Method for Thermodynamic Work Potential Analysis of Aircraft Engines, American Institute of Aeronautics and Astronautics, AIAA publication, No. 3768, 2002.
  • Sezer, I., Altin, I. and Bilgin, A., Exergetic Analysis of Using Oxygenated Fuels in Spark-ignition (SI) Engines, Energy & Fuels. 23(4), 1801-1807, 2009.
  • Sezer, I. and Bilgin, A., Exergy Analysis of SI Engines, International Journal of Exergy, 5(2), 204-217, 2008a.
  • Sezer, I. and Bilgin, A., Mathematical Analysis of Spark Ignition Engine Operation via the Combination of the First and Second Laws of Thermodynamics, Proc. R. Soc. A, 1-22, 2008b.
  • Tsatsaronis G., Recent Developments in Exergy Analysis and Exergoeconomics, International Journal of Exergy, 5(5/6), 489-499, 2008.
  • Turgut, E.T., Karakoc, T.H. and Hepbasli, A., Exergetic Analysis of an Aircraft Turbofan Engine, International Journal of Energy Research, 31(14), 1383-1397, 2007.
  • Turgut, E.T., Karakoc, T.H. and Hepbasli, A., Exergoeconomic Analysis of an Aircraft Turbofan Engine, International Journal of Exergy, 6(3), 277-294, 2009a.
  • Turgut, E.T., Karakoc, T.H., Hepbasli, A. and Rosen, M.A., Exergy Analysis of a Turbofan Aircraft Engine, International Journal of Exergy, 6(2), 181-199, 2009b.
  • Wall, G., Exergy Flows in Industrial Process, Energy, 13(2), 197-208, 1988.
  • Willcox, K., Cost Analysis, 16.885 Aircraft Systems Engineering, Lecture notes, MIT Aerospace Computational Design Laboratory, 2004.
  • Zhecheng, L., Brun, M. and Badin, F., A Parametric Study of SI Engine Efficiency and of Energy and Availability Losses Using a Cycle Simulation, Society of Automotive Engineers Inc., PA, SAE Paper No. 910005, Warrendale, 14 pages, 1991.