Temper Haddelemede Pürüzlülük Transferini Etkileyen Parametrelerin İncelenmesine Yönelik Bir Derleme Çalışması

Malzemelerin yüzeyi, boyama kalitesi ve şekillendirme açısından belli bir pürüzlülüğe sahip olmalıdır. Yüzey pürüzlülüğü, genellikle temper haddelemesi olarak bilinen özel pürüzlü merdanelerle haddelenerek malzemeye verilir. Bir merdanenin pürüzlülüğü, haddeleme parametrelerinden etkilenir ve böylelikle malzeme yüzeyine aktarılır. Malzemede oluşturulacak olan yüzey pürüzlülüğü, boya ve/veya kaplamaların performansı açısından önemli bir faktördür.  Yüzey pürüzlülüğünün az olması boya ve/veya kaplamanın yapışmasını azaltabileceği gibi, fazla olması da boya ve/veya kaplamanın yetersiz olmasına ve paslanmaya neden olabilecek ayrıca boya ve/veya kaplamanın fazla kullanılmasına sebep olarak maliyetlerin artmasına sebep olacaktır. Bu sebeplerden dolayı, bir malzeme yüzeyinin en uygun seviyede pürüzlülüğe sahip olması istenir. Bu makalede, temper haddelemede pürüzlülük transferini etkileyen parametrelere ilişkin çalışmalar referans alınarak literatür taraması yapılmıştır. Bu derleme makalesi bölümler halinde sunularak sonuca ulaşmaya çalışmaktadır. Bu bölümlerde ilk olarak temper haddeleme işlemine, pürüzlendirmenin endüstrideki önemine vurgu yapılmıştır. Sonraki bölümde temper haddeleme ile pürüzlülük transferi sürecinin nasıl gerçekleştiğine değinilmeye çalışılmıştır. Sonraki bölümde ise pürüzlülük transferini etkileyen parametrelere ilişkin çalışmalar incelenmiştir. Temper haddelemede pürüzlülük transferini etkileyen parametrelerin, pürüzlülük transfer oranını nasıl etkiledikleri irdelenmiştir. Elde edilen sonuçlar göz önüne alınarak son bölümde temper haddeleme işlemi neticesinde oluşan pürüzlülük profilinin nasıl olması gerektiği tartışılmıştır. Bu sayede endüstrideki üreticilerin bu çalışmadan en iyi şekilde faydalanmasına yönelik sonuçlar elde edilmeye çalışılmıştır. Aynı zamanda literatüre kazandırılabilecek çalışmalar hakkında birtakım değerlendirmeler yapılmıştır.

___

  • [1] Ginzburg, V. B. ve Ballas, R. 2000. Flat Rolling Fundamentals. 1st edition, CRC Press, Newyork, ABD, s. 178-543.
  • [2] Govindasamy, G. ve Jain, M. K. 2017. Modeling of bending characteristics of symmetric tri-layer laminated sheet materials. Materialstoday:Proceedings, 4(10), 10704-10713.
  • [3] Sharma, A. ve Yadava, V. 2018. Experimental analysis of Nd-YAG laser cutting of sheet materials – A review. Optics & Laser Technology, 98, 264-280.
  • [4] Abe, T. 2014. Surface roughening and formability in sheet metal forming of polycrystalline metal based on r- value of grains. International Journal of Mechanical Sciences, 86, 2-6. [5] Groover, P. M. 2016. Modern İmalatın Prensipleri. 4. Basım, Nobel Akademik Yayıncılık, Ankara, Türkiye, s. 383-483.
  • [6] Kijima, H. 2013. Influence of roll radius on contact condition and material deformation in skin-pass rolling of steel strip. Journal of Materials Processing Technology, 213(10), 1764–1771.
  • [7] Kijima, H. 2014. Influence of roll radius on roughness transfer in skin-pass rolling of steel strip. Journal of Materials Processing Technology, 214(5), 1111–1719. [8] Kijima, H. 2015. An experimental ınvestigation on the ınfluence of lubrication on roughness transfer in skin-pass rolling of steel strip. Journal of Materials Processing Technology, 225: 1–8.
  • [9] Nakhoul, R. 2014. Multi-Scale Method for Modeling Thin Sheet Buckling under Residual Stress – In the Context of Cold Strip Rolling. Doktora Tezi, Paris Teknoloji Enstitüsü, Fransa, s. 29-45.
  • [10] Elkoca, O. 2008. A study on the characteristics of electrical discharge textured skin pass mill work roll. Surface Coatings Technology, 202(12), 2765–2774.
  • [11] Çolak, B. ve Kurgan, N. 2018. An experimental investigation into roughness transfer in skin-pass rolling of steel strips. The International Journal of Advanced Manufacturing Technology, 96, 3321-3330.
  • [12] Çolak, B. 2018. Soğuk haddelemede pürüzlülük transferini etkileyen haddeleme parametrelerinin ve malzeme özelliklerinin deneysel olarak incelenmesi. Doktora Tezi, Karabük Üniversitesi, Karabük.
  • [13] SMS DEMAG. 2003. Influence of temper rolling on material properties, Zürih, İsviçre.
  • [14] Handy, Y., Kurzinsky, J., Jacobs, L., Hörnström, S. E., Richter, U. 2005. Hot and cold rolling processes charecterization and control of roughness transfer in temper rolling. Office for Official Publications of the European Communities, Lüksemburg.
  • [15] Asgari, H., Bakhtiari, A. R., Toroghinejad, M. R. ve Ashrafizadeh, F. 2008. Influence of force variations in skin pass rolling on texture and surface reactivity of hot dip galvanised low carbon steel sheets. Ironmaking & Steelmaking 35(7), 545–48.
  • [16] Köhler, K., Kwiaton, N. ve Bretschneider, M. 2016. Skin pass rolling of high manganese steels. In Materials Science Forum. 854, 93-98.
  • [17] Dick, K. ve Lenard, J. G. 2005. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips. Journal of Materials Processing Technology, 168(1), 16-24.
  • [18] Başoğlu, F. 2019. Temper haddelemede merdane parametrelerinin sac malzemelerin pürüzlülük transferine etkisinin deneysel incelenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Samsun.
  • [19] Lenard, J. G. 2004. The effect of roll roughness on the rolling parameters during cold rolling of an aluminum alloy. Journal of Materials Processing Technology, 152(2), 144-153.
  • [20] Kijima, H. ve Bay, N. 2008. Skin-pass rolling I—Studies on roughness transfer and elongation under pure normal loading. International Journal of Machine Tools and Manufacture, 48(12-13), 1313-1317.
  • [21] Kijima, H. ve Bay, N. 2008. Skin-pass rolling II—Studies of roughness transfer under combined normal and tangential loading. International Journal of Machine Tools and Manufacture, 48(12-13), 1308-1312.
  • [22] Kijima, H. 2015. Influence of lubrication on roughness crushing in skin-pass rolling of steel strip. Journal of Materials Processing Technology, 216, 1-9.
  • [23] Kijima, H. ve Bay, N. 2009. Influence of tool roughness and lubrication on contact conditions in skin-pass rolling. Journal of Materials Processing Technology, 209(10), 4835-4841.
  • [24] Holz, R., Hoen, K. ve Weiss, K. 2010. Advanced technology in skin pass rolling. Millenium Steel, 129-133.
  • [25] Plicht, G., Schillak, H., Lin, M., Edwards, R., Mebrahtu, T., Hofinghoff, H. ve Demski, T. 2007. Skin-pass rolling of steel strip using liquid nitrogen. Materıals Scıence And Technology, 6, 149-157.
  • [26] Qu, F., Xie, H., & Jiang, Z. 2016. Finite element method analysis of surface roughness transfer in micro flexible rolling. In MATEC Web of Conferences(Vol. 80, p. 04002). EDP Sciences.
  • [27] Simao, J., Apinwall, D. K., Wise, M. L. H. ve Subari, K. 1996. Surface texture transfer in simulated tandem and temper mill rolling using electrical discharge textured rolls. Journal of materials processing technology, 56(1-4), 177-189.
  • [28] Batalha, G. F. ve Stipkovic Filho, M. 2001. Quantitative characterization of the surface topography of cold rolled sheets—new approaches and possibilities. Journal of materials processing technology, 113(1-3), 732-738.
  • [29] Prevention, I. P. 2001. Reference document on best available techniques in the ferrous metals processing industry.
  • [30] Hilgenberg, K. ve Steinhoff, K. 2015. Texturing of skin-pass rolls by pulsed laser dispersing. Journal of Materials Processing Technology 225, 84–92.
  • [31] Gorbunov, A. V., Belov, V. K. ve Begletsov, D. O. 2009. Texturing of rollers for the production of auto-industry sheet. Steel in Translation, 39(8), 696.
  • [32] Bloeck, M. 2012. Aluminium sheet for automotive applications. Novelis Switzerland SA, İsviçre. s. 98-108.
  • [33] Sun, D., Yao, L., Fan, Q. ve Zhang, J. 2005. Research on service performances between different textured cold rolls. In AISTech 2006: Iron & Steel Technology Conference Proceedings (I & II), 2, 285-289.
  • [34] Ma, Q., Wang, D. ve Liu, H. 2008. Research and development of lingsteel temper rolling mill and key technique study. In Advanced Design and Manufacture to Gain a Competitive Edge, Springer, London, England, s. 541-550.
  • [35] Jeulin, D. ve Laurenge, P. 1996. Morphological simulation of the roughness transfer on steel sheets. Microscopy Microanalysis Microstructures, 7(5-6), 541-547.
  • [36] Fujii, Y., Maeda, Y. ve Ifuku, R. 2014. Prediction of surface roughness on rolled sheet by texture roll. Procedia Engineering, 81, 161-166.
  • [37] Wentink, D. J., Matthews, D., Appelman, N. M. ve Toose, E. M. 2015. A generic model for surface texture development, wear and roughness transfer in skin pass rolling. Wear, 328, 167-176.
  • [38] Grassino, J., Vedani, M., Vimercati, G. ve Zanella, G. 2012. Effects of skin pass rolling parameters on mechanical properties of steels. International Journal of Precision Engineering and Manufacturing, 13(11), 2017-2026.
  • [39] Lenard, J. G. 2013. Primer on flat rolling. Newnes.
  • [40] Li, H. J., Jiang, Z. Y. ve Wei, D. B. 2013. Study on effect of strain rate on 3D surface asperity flattening in uniaxial planar compression by crystal plasticity finite element modelling. Wear, 301(1-2), 11-18.
  • [41] Wilson, W. R. D., Hsu, T. C. ve Huang, X. B. 1995. A realistic friction model for computer simulation of sheet metal forming processes. Journal of engineering for industry, 117(2), 202-209.
  • [42] Butler, L. H. 1957. The Effects of Lubricants on the Surface Appearance of Aluminum After Plastic Deformation. Metallurgia, 2, 63-66.
  • [43] Yıldız, Y. 2011. Alüminyum folyo haddelemede kullanılan merdanelerin taşlama operasyonu ile kazandıkları yüzey özelliklerinin haddeleme prosesine etkileri” Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul.
  • [44] Ma, B., Tieu, A. K., Lu, C. ve Jiang, Z. 2002. An experimental investigation of steel surface characteristic transfer by cold rolling. Journal of Materials Processing Technology, 125, 657-663.