Thermodynamics of philicphobic interaction shift in aqueous tweens 20-80

Sulu polioksietilen sorbitan monolaurat (monolaurate) (C=12, Tw20), monopalmitat (C=16, Tw40), monostearat (C=18, Tw60) ve monooleat (C=18, I çift bağ, Tw80) iyonik olmayan yüzey aktif maddeler 293.15 K de, yoğunluk $(rho pm 10^{-3} kg m^{-3})$, yüzey gerilimi $(gamma pm 10^{-2} mNm^{-1})$, 8.4 ile 83.6 mmol $kg^{-1}$ (mmk) aralığında 8 mmk aralıklarlarla rapor edildi. Görünür molar hacim $(V_2)$, yoğunluklardan hesaplandı. İlave yüzey gerilimi $gamma$ için $(gamma^{excess}, mNm^{-1})$, derişim (konsentrasyon) için $(tau, mol m^{-2})$ ve molekül başına düşen yüzey alanı için $(a=l/ tau, m^2 mol^{-1})$ kullanıldı. $rho$ ve $gamma$ sınır değerleri $rho^0$ ve $gamma^0$ 'a indirgendi ve suitici etkileşimden suçekici etkileşime kayış için eğim [bulundu]. $rho^0_{Tw20} > rho^0_{Tw40} > rho^0_{Tw80} > rho^0_{Tw60}$ ve $V^0_{2Tw60} > V^0_{2Tw40} > V^0_{2Tw80} > V^0_{2Tw20}$, sınır yoğunluklar ve görünür molar hacimler ters sırada; şu bulguya yönlendirmektedir ki Tw20 ile kuvvetli ve Tw60 ile zayıf yapısal etkileşim vardır. $gamma_{water} > gamma^0_{Tw80} > gamma^0_{Tw40} > gamma^0_{Tw20} > gamma^0_{Tw60} $ şu sonuca yöneltmektedir: Kohesiv kuvvet suya göre %18 zayıflamaktadır, özellikle Tw60 kohesive kuvvetde %22.68 azalmaya sebep olmaktadır. $gamma^0$ değerlerindeld bu değişimler, değişimin eğimi ile beraber farklı etkileşim kimyasal potansiyelleri ni ($mu, J, m^{-2}$) ve entropi değişimlerini ($Delta S, J morl^{-1} K^{-1}$) açıklamaktadır. $mu^B < 0 < mu^S$ olmak üzere termodinamik durum $mu^S$ ve $mu^B$ nin belirlediği suitici (hidrofilik) ve suçekici (hidrofobik) davranışların kritik eüdsini açıklamak İçin MPK modeli önerildi. Burada $mu^S$ ve $mu^B$ yüzeyin ve sıvının etkileşen kimyasal potansiyelleridir.

Sulu tvin 20-80 çözeltilerde yüzeysel itme-çekme (philicphobic) rtkileşimdeki değişimin termodinamiği

Density $(rho pm 10^{-3} kg m^{-3})$, surface tension $(gamma pm 10^{-2} mNm^{-1})$ for 8.4 to 83.6 mmol $kg^{-1}$(mmk) at 8 mmk intervals aqueous polyoxyethylene sorbitan monolaurate (C=12, Tw20), monopalmitate (C=16, Tw40), monostearate (C=18, Tw60) and monooleate (C=18, 1 double bond, Tw80) nonionic surfactants at 293.15 K are reported. Apparent molar volumes $(V_2)$ are derived from densities. The $gamma$ is used for surface excess tension $(gamma^{excess}, mNm^{-1})$, concentration $(tau, mol m^{-2})$ and area per molecule $(a=l/ tau, m^2 mol^{-1})$. The $rho$ and $gamma$ were regressed for limiting $rho^0$ and $gamma^0$ respectively and slopes for a shift from hydrophilic to hydrophobic interactions. The $rho^0_{Tw20} > rho^0_{Tw40} > rho^0_{Tw80} > rho^0_{Tw60}$ and $V^0_{2Tw60} > V^0_{2Tw40} > V^0_{2Tw80} > V^0_{2Tw20}$, the limiting densities and apparent molar volumes respectively in opposite order, have inferred stronger structural interaction with Tw20 and weaker with Tw60. The $gamma_{water} > gamma^0_{Tw80} > gamma^0_{Tw40} > gamma^0_{Tw20} > gamma^0_{Tw60} $ inferred as 18% weakening of their cohesive force in comparison to water, especially, the Tw60 has caused a 22.68% decrease in the cohesive force. These variations in the $gamma^0$ data along with their slope have revealed different interacting chemical potentials ($mu, J, m^{-2}$) and entropic change ($Delta S, J morl^{-1} K^{-1}$). The MPK model is proposed to illustrate the critical impact of the hydrophilic-hydrophobic actions depicted as $mu^S$ and $mu^B$ with $mu^B < 0 < mu^S$ thermodynamic state. The μS and μB are interacting chemical potentials of surface and bulk phases respectively.

___

  • Bakshi, Kaur, M. S., Kaur, A. (2006). Effect of temperature on the unfavorable mixing between tetraethylene glycol dodecyl ether and plusomic. G. J. Colloidal Interface Sci. 1, 296-370.
  • Bartschat, K. (1992). Mitt Scattering and angular momentum orientation low-energy electron Scattering from indium atom. J. Phys. B. At Mol. Opt. Phys, 25, L307.
  • Costantino, L., Errico, G. D., Roscigno, P., and Vitagliano, V. (2000). Effect of Urea and Alkylureas on Micelle Formation by Non-ionic surfactant with Short Hydrophobic Tail at 25.00C. J. Phys. Chem. B104, 7326-7333.
  • Denial, R. S., Woodrow L. S., Daniel P. L. (2003). Lorenz force effect in magneto turbulence. Elsevie Science direct, Physics of the earth and planetary Interior, 135, 137-159.
  • Dubost, H. (1998). Picosecond to Minute Molecular Vibrational Dynamics in Crystosolids. J. of low temp. phys.111, 615-628.
  • Elliott, R. S., Shaw, J. A. Triantafyllidis, N. (2006). Stability of crystalline solids-II: Application to temperature-induced martensitic phase transformations in a bi-atomic crystal. J. Mech. Phys. Solids, 54, 193- 232.
  • Fohel, P.S., Aswal, V.K. (2001). Miceller structure intermicelle interaction in miceller solutions: Results of small angle neutron scattering studies. Current science, 80, 8-2.
  • Gurtu, J. N. (2006). Advance Physical Chemistry. Eight Revised Edition, 592-600.
  • Hafner, J. (2003). Vibrational spectroscopy using AB initio density-functional techniques. J. Mol. Struct, 3, 651- 653.
  • JianBin, Z., GpengYan, Z., Kai, M., Fung, H., GuoHua, C., XiongHui, W. (2008). Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study. Sci. China. Series B: Chem, 51, 420-426.
  • Kao, M. J., Tien, D. C., Jwo, C. S. and Tsung, T. T. (2005). The study of hydrophilic characteristic of ethylene glycol. J. of physics, 13, 442-445.
  • Kohler, M., Lunkenheimer, P., and Loide, A. (2008). Dielectric and conductivity relaxation in mixture of glycerol with LiCl. Eur. Phys. J. E. Soft Matter, 27(2), 114-122.
  • Lee, Dal-Heui., Kim, Eun-Sik., Chang, Ho-Wan. (2005). Effect of Tween surfactant compounds for remediation of toluene- contaminated groundwater. Geosciences J. 9(3), 261-267.
  • Levin, Y., and Flores-Mena, J. E. (2001). Surface tension of strong electrolytes solution. Euro physics. Lett. 56(2), 187-192.
  • Mitropoulos, A. Ch. (2008). What is surface excess? 1, 1-3. Rossnagel, K., Smith, N. V. (2006). Spin-orbit coupling in the band structure of reconstructed 1T-TaS2. Phys. Rev. B. 73, 073106.
  • Singh, A., Mistra, V. K., Patel, S.K., Sheikh, S., Sadhu K. and Courey N. K. (2010a). Effect of surfactant on Two immiscible liquid by Mansingh Survismeter. Int. J. of Pharmacy and Life sciences, 1(3), 182-187.
  • Singh, M. (2005). A Simple Instrument for Measuring the Surface Tension And Viscosity of Liquids. J. Instrum. Exp. Technol. 48, 270-271.
  • Singh, M. (2006a). Experimentally for hydrophilic and hydrophobic interactions analysis of N methyl ureas with water using density and surface tension. J. Biochem. Biophy. Methods, 67, 151-161.
  • Singh, M. (2006b). Survismeter- Type I and II for surface tension, Viscosity measurement of liquids for academic, and research development studies. J. Biochem. Biophy. Methods, 67(30), 151-161.
  • Singh, M. (2007). Survismeter 2-in-1 for viscosity and surface tension measurement, an excellent invention for industrial proliferation of surface forces in liquid. Surface Review and Letters, 14 (05), 973-983.
  • Singh, M. (2008). Pre-requisite physico-chemical studies of 1,3,5 triazine for micro mixing with wax emulsion + 4- nonyl phenol ethoxylate, estimated with SEM technique. Phys. Chem. Liq. 46, 98-110.
  • Singh, M., Kumar, A. (2006). Hydrophobic interaction of Methylureas in Aqueous Solutions Estimated with Density, Molal Volume, Viscosity and Surface Tension from 293.15 to 303.15K. J. of Sol. Chem. 35(4).
  • Singh, M., Matsuoka, H. (2009) Liquid-liquid interface study of hydrocarbons, alcohols, and cationic surfactants with water. Surface Review and Latters, 16(4), 599-608.
  • Singh, M., Mistra V. K. (2008). Solvodynemics of Benzene and water phases by DTAB, MTOAC, TMSOL and Orcinol studied with Interfacial Tension, Surface Tension and Viscosity measured with Survismeter. Int. J. of Thermo. 11, 181-186.
  • Singh, M., Mistra, V. K., Kale, R.K., Jain, C. L. (2010b). Molecular Activation Energies (Δμ2 *) OF L-Lusine, LTyrosine, DL-Alanine,Glycerol,Orcinol,Iodine,DTAB, and TMSOI for blending with Melamine- Formaldehyde-Polyvinylpyrrolidone Polymer Resin Illustrated with SEM. J. App. Polym. Sci.
  • Singh, M., Sharma, Y. K. (2006b). Activation Energy and Transition State Theory Applications for Interactions of Nucleos (t)ides and Furanose Puckering in Aqueous Medium from 288.15 to 298.15 K. Phys. Chem. Liq., 1, 44.
  • Singh, M., Sharma, Y. K. (2006a). Volumetric and viscometer studied of Nucleosides, Nucleotides and Sugar in Aqueous Medium from 288.15 to 298.15K. Iran J. Chem. Eng. 25(1), 53-66.
  • Singh, M., Sushma, (2009). Studies of densities, apparent Molar volume , viscosities, surface tension and free energies of activation for interactions of praseodynemiumsalzen complex with dimethylsulphoxide. J. Mol.Liq. 148, 6-12.
  • Surface tension of water vs temperature. Wikipedia. Org./wiki/properties of water.
  • Valery, C., Pouget, E., Pandit, A., Verbavatz, J. M., Bordes, L., Boisde, I., Cherif-Cheikh, R., Artzne, F., Paternostre, M. (2008). Molecular origin of the self- Assembly of Lanreotide into Nanotubes: A Mutational Approach. Biophys. J. 94, 1782-1795.
  • Wendlandt, J. (2005). Study of with hydrogen binding in small water cluers with density functional theory calculation.