The use of the 2nd law as a potential design tool for aircraft air frame subsytems

Bu çalışmada entegre uçak tasarım/sentezinin bir bileşeni olarak havayla etkileşim altsisteminin tersinmez termodinamik modellemesi sunulmaktadır. Karmaşık geometrilerde entropi hesaplama yöntemleri eğrilerden meydana gelen kordinatlarda türbülans etkilerini de içerecek şekilde anlatılmıştır.Hem viskoz olmayan hem de viskoz hesapları rapor edilmiş ve entropi denklemindeki çeşitli terimlerin katkıları araştırılmıştır.Yöntemin geçerliliği doğrulanmış ve sonra B747-200 uçağı üzerindeki akış ile ilgili entropi üretimi hesabına kadar genişletilmiştir.Sonuçlar entropi üretiminin çoğunun türbülanstan dolayı olduğunu göstermiştir.Entropi denklemindeki viskoz ısı üretimi terimi ısı transferi terimine göre daha büyüktür. Sonuçların tasarımın geliştirilmesine olan katkıları kısaca anlatılmıştır.

Uçakların havayla etkileşim altsistemi için potansiyel bir tasarım aracı olarak ikinci kanunun kullanımı

This paper presents the modeling of the irreversible thermodynamics of the Air Frame Subsystem as a component of integrated aircraft design/synthesis. Entropy calculation procedures for complicated geometries in curvilinear coordinates are described, including the effects of turbulence. Both inviscid and viscous calculations are reported and the contributions of the various terms in the entropy equation are investigated. The procedure is validated and then extended to the calculation of entropy generation associated with flow over the B747-200 aircraft. Results show that most of the entropy generation is due to turbulence. The viscous dissipation term in the entropy equation dominates compared to the heat transfer term. The implications of the results for design improvement are briefly discussed.

___

  • Adeyinka, O. B. and Naterer, G. F., 2004, "Modeling of Entropy Production in Turbulent Flows" 7. Fluid Eng. Vol. 126, pp. 893-899.
  • Adeyinka, O. B. and Naterer, G. F., 2002, "Predicted Entropy and Measures with Particle Image Velocimetry" AIAA 2002-2090.
  • Alabi, K,, Ladeinde, F., Safta, C., Cai, X,, 2006, "Assessing CFD Modeling of Entropy Generation for the Air Frame Subsystem in an Integrand Aircraft Design/Synthesis Procedure", AIAA 2006-587. 44th Aerospace Sciences Meeting, Reno, NV, January 2006.
  • Bejan, A., 1982, Entropy Generation through heat and fluid flow, J.Wiley & Sons, NY.
  • Denton, J. D., 1993, "Loss Mechanisms in. Turbomachines" J. Turbomach. Vol. 115, Oct.
  • Erbay, L. B., Ercan, M. S., Sulus, B., and Yalcin, M. M., 2003, "Entropy Generation During Fluid Flow Between Two Parallel Plates with Moving Bottom Plate*', Entropy, 5, 506-518.
  • Kakac, S. and Yener, Y., 1995, Conveciive Heat Transfer, GRC Press, 2nd ed.
  • Kock, F., Herwig, H., 2004, "Local Entropy Production in Turbulent Shear Flows: A High Reynolds Number Model with Wall functions", Int. J. Heat Mass Transfer.
  • Kramer-Bevan, J. S., 1992, "A Tool for Analysis of Fluid Flow Losses" M.Sc Thesis, University of Waterloo, Canada.
  • Ladeinde, F., Alabi, K., Safta, C., Cai, X.. 2006, "The First High -Order Simulation of Aircraft: Challenges and Opportunities", AIAA 2006-1526. 44th Aerospace Sciences Meeting, Reno, NV.
  • Mahmud,S., Fraser, R. A., 2002, "Thermodynamic Analysis of Flow and Heat Transfer Inside Channel with Two Parallel Plates", Exergy, an International Journal, vol. 2, pp. 140-146.
  • Moorhouse, D. J., 2003, "A Proposed System-Level Multidiseiplinary Analysis Technique Based on Exergy Methods", AIAA Journal of Aircraft,. Vol. 40, No. I.
  • Munoz, J.R., von Spakovsky, M.R., 2003, "Decomposition in Energy System Synthesis / Design Optimization for Stationary and Aerospace Applications", AIAA Journal of Aircraft, special issue, Vol. 39, No. 6.
  • Natalini G., Sciubba, E.. 1995. "Minimization of the local rates of entropy production in the design of air-cooled gas turbine blades", ASME J. Eng. for CT & Power, v. 121, pp 121 -130.
  • Naterer, G. F., and Camberos, J. A., 2003, "Entropy Production Rates from Viscous Flow Calculations", J. Therrnophys. & Heat Transfer 17(3), pp 360-371.
  • Rancruel, D. F., 2002, "A Decomposition Strategy Based on Thermoeconomic Isolation Applied to the Optimal Synthesis/Design and Operation of an Advanced Fighter Aircraft System", M.Sc. Thesis, Virginia State University.
  • Rancruel, D. F., von Spakovsky, M. R., 2004, "Use of a Unique Decomposition Strategy for the Optimal Synthesis/Design and Operation of an Advanced Fighter Aircraft System", 10th AIAA/1SSMO Multi- disciplinary Analysis and Optimization Conference, Aug. 30 - Sept. 1, Albany, New York.
  • Şahin, A. Z., 2000, "Entropy Generation in a Turbulent Liquid Fluid Flow Through a Smooth Duct Subjected to Constant Wall Temperature", Int. Journal of Heat and Mass Transfer, vol. 43, pp. 1469-1478.
  • Steffen, C. J.,1993, "A Critical Comparison of Several Low Reynolds Number $k-varepsilon$ Turbulence Models for Flow Over a Backward-Facing Step", NASA Technical Memorandum 106173. AIAA-93-1927.
  • Safta, C., Alabi, K., Ladeinde, F., 2006, "Comparative advantages of high-order schemes for subsonic, transonic, and supersonic flows", AIAA Paper AIAA-2006-299.
  • Thaerocomp Technical Corp., 2004, "AEROFLO User's Manual.