Solvodynamics of benzene and water phases by DTAB, MTOAC, TMSOL and orcinol studied with interfacial tension, surface tension and viscosity measured with survismeter

Biribirinde çözünmeyen benzen ve su karıştırıldığında, kendi yüzey gerilimleri dolayısıyla gerilimi yüksek olan ve yüksek kalmaya devam eden, yüzey enerjisi yüksek bir arayüzey oluştururlar. Olayın fiziği nedeniyle gerilimli yüzeylerin kuvvetleri dengelenerek en uygun yüzey kuvvetini oluştururlar ki buna arayüzey kuvveti adı verilir.(İFT, mN/m). Yüzeyaktif maddeler olarak dodesiltrimetilamonyum bromid (DTAB), trimetilsulfoksonyum iyodid (TMSOİ), metiltrioktilamonyum klorid (MTOAC) ve 3,5-dihidroksitoluen monohidrat (Orcinol) katıldığında su ve benzen arasındaki İFT önemli ölçüde düşerek DTAB, TMSOİ, su, orcinol ve MTOAC için sırasıyla 15.69, 12.86, 10C59, 8.36 ve 2.97 mN/m değerlerini alır. Bu İFT düşmeleri 'ıslatma' adı verilen fazların yüksek karşılıklı çözünürlülüğü (MM) sonucunu doğurur. DTAB ve orcinol 304.65 K sıcaklıkda yüksek kohesiv kuvvetler dolayısıyla suyun 71.25 olan yüzey gerilimini sırasıyla 79.55 ve 72.70 değerlerine yükseltirler.

Benzen ve su fazlarının DTAB, MTOAC, TMSOI ve orkinol ilavesinde çözünme dinamiğinin arayüzey gerilimini, yüzey gerilimini ve viskoziteyi survismetreyle ölçerek incelenmesi

Both benzene and water immiscible phases when mixed together develop an energetic interface that remains tense due to individual surface tensions. Physics of a tense interface does equilibrate tensional forces to have an optimized surface force which is denoted as Interfacial Tension (IFT, mN/m). The IFT between water and benzene with addition of surfactants: dodecyltrimethylammonium bromide (DTAB), trimethylsulfoxonium iodide (TMSOI), methyltrioctylammonium chloride (MTOAC) and 3,5-dihydroxytoluene monohydrate (Orcinol) critically decrease to 15.69, 12.86, 10.59, 8.36, 2.97 mN/m for DTAB , TMSOI, water, orcinol, MTOAC respectively. This lowering of IFT infers a higher mutual miscibility (MM) of the phases denoted as wetting. The DTAB and orcinol increased surface tension of water from 71.25 to 79.55 and 72.70 mN/m respectively at 304.65 Kelvin temperature due to stronger cohesive forces.

___

  • Al-Sabagh, A.M., Ahmed, N.S., Nassar, A.M., Gabr, M.M., 2003, “Synthesis and evaluation of some polymeric surfactants for treating crude oil emulsions part i: treatment of sandy soil polluted with crude oil by monomeric and polymeric surfactants”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 216, No. 1-3, pp. 9-19.
  • Andelija, M., Darko, I., Mirjana, M., Biljana, J., Slavko, M., 2006, “Influence of structural and interfacial properties of microemulsion eluent on chromatographic separation of simvastatin and its impurities”, Journal of Chromatography A, Vol. 1131, No. 1-2, pp. 67-73.
  • Hilal, S.H., Karickhoff, S.W., Carreira, L.A., 1999, Estimation of microscopic, zwitterionic ionization constants, isoelectric point and molecular speciation of organic compounds”, Talanta, Vol. 50, No. 4, pp. 827-840.
  • Kuznetsov, Y.I., Kazansky, L.P., 2008, Physicochemical aspects of metal protection by azoles as corrosion inhibitors, Russian Chemical Reviews, Vol. 77, pp. 219-232.
  • Rosen, M.J., Zhu, Z.H., 1993, “Enhancement of wetting properties of water-insoluble surfactants via solubilization”, Journal of the American Oil Chemists Society, Vol. 70, pp. 65-68.
  • Selcan, K., Kohler, K., Findenegg, G. H., 1988, “Interfacial tensions in simple oil-watersurfactant systems near their three-phase region”, Colloid & Polymer Science, Vol. 266, pp. 283- 290.
  • Singh, M., 2005a, “Studies of intermolecular force coefficient (σ0 imf) for methyl derivatives of urea in aqueous solutions with friccohesity, a new physicochemical function, from 293.15 to 303.15K” Journal of Indian Chemical Society, Vol. 82, pp. 129-135.
  • Singh, M., 2005b, “Studies of molecular interactions of α-amino acids in aqueous and cationic surfactants systems investigated from density and apparent molal volume at 283.15, 288.15 and 293.15K”, Pakistan Journal of Sciencetific Research, Vol. 48, No. 5, pp. 303- 311.
  • Singh, M., 2005c, “A simple instrument for measuring the surface tension and viscosity of liquids”, Journal of Instrumentl and Expperimental Techniques, Vol. 48, pp. 270-271. Singh, M., 2006a, “Upper critical solution temperatures for immiscible solvent systems with halides salts, carboxylic acids, surfactants and polynuclear aromatic compounds and benzene derivatives”, Journal of Chemical Thermodynamics, Vol. 39, No. 2, pp. 240-246.
  • Singh, M., 2006b, “Survismeter type 1 and 2 for surface tension and viscosity measurements of liquids for academic, and research and development studies”, Journal of Biochemical and Biophysical Methods, Vol. 67, pp. 151-161.
  • Singh, M., 2006c, “Measurements of surface tension and viscosity of liquids with survismetera green chemistry instrumental approach” Bulgarian Journal of Chemical Education, Vol. 15, No. 6, pp. 426-430.
  • Singh, M., 2007a, “Contribution of π conjugation electron and -CH3 group of aromatic compounds for upper consolute temperature (UCT) of immiscible solvent phases”, Proceedings of National Academy Science India, Vol. 77 (A), pp. 17-20.
  • Singh, M., 2007b, “Structural interactions of globular proteins-bovine serum albumin, egg albumin, and lysozyme, in aqueous medium, elucidated with molar volumes, viscosities, energy functions, and IR spectra from 293.15 to 303.15 K”, Journal of Applied Polymer Science, Vol. 103, No. 3, pp. 1420-1429.
  • Singh, M., Chand, H., Gupta, K.C., 2005, “Density and viscosity of bovine serum albumin egg albumin and lysozyme in aqueous and RbI, CsI and DTAB aqueous solutions at 303.15K and molecular interactions”, Journal of Chemistry and Biodiversity Helvetica Chimica Acta, Vol. 2, No. 6, pp. 809-824.
  • Singh, M., Kumar, A., 2006, “Hydrophobic interactions of methyl ureas in aqueous solutions estimated with density, molal volume, viscosity and surface tension from 293.15 to 303.15 K”, Journal of Solution Chemistry, Vol. 35, No. 4, pp. 567-582.
  • Singh, M., Kumar, V., 2007, “Effect of bomolecules: vitamins, proteins, amino acids, and Surfactants: DTAB, MTOAC, TMSOI, orcinol on upper critical solution temperatures”, International Journal of Thermodynamics, Vol. 10, No. 3, pp. 121-133.
  • Singh, M., Pandey, M., Yadav, R.K., 2007, “Thermodynamic studies of molar volume, pair and triplet interactions with increase in length of side-chain of α-amino acids in aqueous potassium chloride solutions at different concentration and 310.15 K”, Journal of Molecular Liquids, Vol. 135, pp. 188-191.
  • Verdes, C.G., Urbakh, M., Kornyshev, A.A., 2004, “Surface tension and ion transfer across the interface of two immiscible electrolytes”, Electrochemistry Communications, Vol. 6, No. 7, pp. 693-699.
  • Vollmer, D., Vollmer, J., 2000, “Bending free energy and spontaneous curvature for micelles and microemulsions with weak and strong surfactants”, European Physics Journal E, Vol. 4, pp. 153-159.
  • Vora, S., George, A., Desai H., Bahadur, P., 1999 “Mixed micelles of some anionic-anionic, cationic-cationic, and ionic-nonionic surfactants in aqueous media”, Journal of Surfactants and Detergents, Vol. 2, No. 2, pp. 213-221.
  • Wan, Y., Shi, Y., Zhao, D., 2007, “Designed synthesis of mesoporous solids via nonionicsurfactant- templating approach”, Chemical Communications, Vol. 9, pp. 897- 926.
  • Yue, P., Feng, J.J., Liu, C., Shen, J., 2004, “A diffuse-interface method for simulating twophase flows of complex fluids”, Journal of Fluid Mechanics, Vol. 515,pp. 293-317.