Quantum effects on gas diffusion at the nano scale

Nano ölçekte tutuklanmış gazların termodinamik ve transport özellikleri makro ölçektekilerden önemli ölçüde farklıdır. Nano ölçekte, kuantum ölçek etkileri (KÖE) önemli hale gelirerek gazların davranışlarını değiştirir. Bu çalışmada, tek atomlu Fermi ve Bose gazlarının difuzyon katsayıları KÖE gözönüne alınarak analitik olarak türetilmiştir. KÖE ve kuantum dejenerasyonunun difîizyon katsayıları üzerindeki etkileri, bu etkileri birbirlerinden bağımsız olarak analiz edebilmek için ayrı ayrı incelenmiştir.

Nano ölçekte gaz difüzyonu üzerinde kuantum ölçek etkileri

The thermodynamic and transport properties of gases confined at the nano scale are considerably different than those at the macro scale. At the nano scale, quantum size effects (QSE) become important and changes the behavior of gases. In this study, the diffusion coefficients of monatomic Fermi and Bose gases are analytically derived by considering QSE. The influences of QSE and quantum degeneracy on the diffusion coefficients are examined separately to analyze these effects individually. The variations of the ratio of diffusion coefficients of He3 and He4 gases with the concentration of He3 are analyzed for both low and high density conditions.

___

  • Arora, V. K., (1981). “Quantum Size Effects in Thin-Wire Transport”, Physical Review B, 23(10), 5611-5612.
  • Barati, M. and Sadeghi, E., (2001). “Study of Ordinary Size Effect in the Electrical Conductivity of Bi Nanowires”, Nanotechnology, 12, 277-280.
  • Dai, W. S. and Xie, M., (2004). “Geometry Effects in Confined Space”, Physical Review E, 70, 016103.
  • Firat, C. and Sisman, A., (2009). “Universality of the Quantum Boundary Layer for a Maxwellian Gas”, Physica Scripta, 79(6), 065002.
  • Jakobtorweihen, S., Keil, F. J., and Smit, B., (2006). “Temperature and Size Effects on Diffusion in Carbon Nanotube”, Journal of Physical Chemistry B, 110, 16336-16336.
  • Liu, K., Chien, C. L. and Searson, P. C., (1998). “Finite Size Effects in Bismuth Nanowires”, Physical Review B, 58(22), 1468114684.
  • Molina, M. I., (1996). “Ideal Gas in a Finite Domain”, American Journal of Physics, 64(4), 503-505.
  • Oleshko, V. P., (2008). “Size Confinement Effects on Electronic and Optical Properties of Silver Halide Nanocrystals as Probed by Cryo-EFTEM and EELS”, Plasmonics, 3, 41-46.
  • Ozturk, Z. F. and Sisman, A., (2009). “Quantum Size Effects on the Thermal and Potential Conductivities of Ideal Gases”, Physica Scripta, 80(6), 065402.
  • Pathria, R. K., (1998). “An Ideal Quantum Gas in a Finite- Sized Container”, American Journal of Physics, 66(12), 1080-1085.
  • Sisman, A., (2004). “Surface Dependency in Thermodynamics of Ideal Gases”, Journal of Physics: Math. and Gen., 37, 11353-11361.
  • Sisman, A., Ozturk, Z. F. and Firat C., (2007). “Quantum Boundary Layer: A Non-Uniform Density Distribution of an Ideal Gas in Thermodynamic Equilibrium”, Physics Letters A, 362(1), 16-20.
  • Skoulidas, A. I., Ackerman, D. M., Johnson, J. K. and Sholl, D. S., (2002). “Rapid Transport of Gases in Carbon Nanotubes”, Physical Review Letters, 89(18), 185901.
  • Striole, A., (2006). “The Mechanism of Water Diffusion in Narrow Carbon Nanotubes”, Nano Letters, 6(4), 633- 639.
  • Trivedi, N. and Ashcroft, N. W., (1988). “Quantum Size Effects in Transport Properties of Metallic Films”, Physical Review B, 38(17), 12298-12309.
  • Wood, D. M. and Ashcroft, N. W., (1982). “Quantum Size Effects in the Optical Properties of Small Metallic Particles”, Physical Review B, 25(10), 6255-6274.