Nonlinear generalization of Schrödinger's equation uniting quantum mechanics and thermodynamics

Kavramsal olarak (von Neumann)'m quvantum istatistiksel mekaniği (QSM) ve (Jaynes )'in quvantum enformasyon teorisi (QIT) den farklı olan, ancak termodinamik denge (TE) durumları için ayni matematiğe indirgenen, ve standard quvantum mekaniği (QM) ihtiva eden ki sıfır entropi durumları için zamana bağlı Schrödinger denklemine indirgenen, kendi içinde uyumlu bir QM ve termodinamik birleşimini sağlayan lineer olmayan bir hareket denklemi tüm matematiksel detayları ile anlatıldı...

Schrödinger denkleminin kuvantum mekaniği ve termodinamiği birleştiren lineer olmayan genellemesi

The nonlinear equation of motion that accomplishes a self-consistent unification of quantum mechanics (QM) and thermodynamics conceptually different from the (von Neumann) foundations of quantum statistical mechanics (QSM) and (Jaynes) quantum information theory (QIT), but which reduces to the same mathematics for the thermodynamic equilibrium (TE) states, and contains standard QM in that it reduces to the time-dependent Schrödinger equation for zero entropy states is discussed in full mathematical detail. By restricting the discussion to a strictly isolated system (non- interacting, disentangled and uncorrelated), we show how the theory departs from the conventional QSM/QIT rationalization of the second law of thermodynamics, which instead emerges in QT (quantum thermodynamics) as a theorem of existence and uniqueness of a stable equilibrium state for each set of mean values of the energy and the number of constituent particles. To achieve this, the theory assumes − $k_B$ Trρ In ρ for the physical entropy and is designed to implement two fundamental ansatzs: (1) that in addition to the standard QM states described by idempotent density operators (zero entropy), a strictly isolated and uncorrelated system admits also states that must be described by non-idempotent density operators (nonzero entropy); (2) that for such additional states the law of causal evolution is determined by the simultaneous action of a Schrödinger-von Neumann-type Hamiltonian generator and a nonlinear dissipative generator which conserves the mean values of the energy and the number of constituent particles, and in forward time drives the density operator in the 'direction' of steepest entropy ascent (maximal entropy generation). The resulting dynamics is well defined for all non-equilibrium states, no matter how far from TE. Existence and uniqueness of solutions of the Cauchy initial value problem for all density operators implies that the equation of motion can be solved not only in forward time, to describe relaxation towards TE, but also in backward time, to reconstruct the 'ancestral' or primordial lowest entropy state or limit cycle from which the system originates. Zero entropy states as well as a well defined family of non-dissipative states evolve unitarily according to pure Hamiltonian dynamics and can be viewed as unstable limit cycles of the general nonlinear dynamics.

___

  • [1] V. Gorini and E.C.G. Sudarshan, in Foundations of Quantum Mechanics and Ordered Linear Spaces (Advanced Study Institute, Marburg, 1973), Editors A. Hartkämper and H. Neumann, Lecture Notes in Physics, Vol. 29, pp. 260-268.
  • [2] V. Gorini, A. Kossakowski and E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976).
  • [3] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
  • [4] E.B. Davies, Rep. Math. Phys. 11, 169 (1977).
  • [5] H. Spohn and J. Lebowitz, Adv. Chem. Phys. 38, 109 (1978).
  • [6] R. Alicki, J. Phys. A 12, L103 (1979).
  • [7] B. Misra, I. Prigogine, and M. Courbage , Proc. Natl. Acad. Sci. USA, 76, 3607, 4768 (1979).
  • [8] M. Courbage and I. Prigogine, Proc. Natl. Acad. Sci. USA, 80, 2412 (1983).
  • [9] G.P. Beretta, in Frontiers of Nonequilibrium Statistical Physics, proceedings of the NATO Advanced Study Institute, Santa Fe, June 1984, Editors G.T. Moore and M.O. Scully (NATO ASI Series B: Physics 135, Plenum Press, New York, 1986), p. 193 and p. 205.
  • [10] G.P. Beretta, in The Physics of Phase Space, edited by Y.S. Kim and W.W. Zachary (Lecture Notes in Physics 278, Springer- Verlag, New York, 1986), p. 441.
  • [11] H. Margenau, The Nature of Physical Reality, McGraw-Hill, 1950.
  • [12] J.L. Park, Am. J. Phys. 36, 211 (1968).
  • [13] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Engl. transl. of the 1931 German edition by R.T. Beyer, Princeton University Press, 1955, pp. 295 - 346.
  • [14] D. Bohm and J. Bub, Rev. Mod. Phys. 38, 453 (1966).
  • [15] J.L. Park, Philosophy of Science 35, 205, 389 (1968).
  • [16] W. Band and J.L. Park, Found. Phys. 1, 133 (1970).
  • [17] B. d'Espagnat, Conceptual Foundations of Quantum Mechanics, Addison-Wesley, second edition, 1976.
  • [18] C.G. Timpson and H.R. Brown, Int. J. Quantum Inf. 3, 679 (2005).
  • [19] G.N. Hatsopoulos and E.P. Gyftopoulos, Found. Phys. 6, 15, 127, 439, 561 (1976).
  • [20] G.P. Beretta, Int. J. Theor. Phys. 24, 119 (1985).
  • [21] E.P. Gyftopoulos and G.P. Beretta, Thermodynamics: Foundations and Applications, Dover Publications, Mineola, NY, 2005.
  • [22] E.P. Gyftopoulos and E. Çubukçu, Phys. Rev. E 55, 3851 (1997).
  • [23] G.P. Beretta, J. Math. Phys. 27, 305 (1986).
  • [24] The stable-equilibrium formulation of the second law of thermodynamics is well known and must be traced to G. N. Hatsopoulos and J. H. Keenan, Principles of General Thermodynamics, Wiley, New York, 1965. It has been further clarified in J. H. Keenan, G. N. Hatsopoulos, and E. P. Gyftopoulos, Principles of Thermodynamics, in Encyclopaedia Britannica, Chicago, 1972, and fully developed in Ref. [21].
  • [25] E. Çubukçu, Sc.D. thesis, M.I.T., 1993, unpublished.
  • [26] W. Franzen, Phys. Rev. 115, 850 (1959).
  • [27] S.G. Kukolich, Am. J. Phys. 36, 420 (1967).
  • [28] G.P. Beretta, Sc.D. thesis, M.I.T., 1981, unpublished, ArXiv:quant-ph/0509116.
  • [29] G.P. Beretta, ArXiv:quant-ph/0112046.
  • [30] S. Gheorghiu-Svirschevski, Phys. Rev. A 63, 022105, 054102 (2001).
  • [31] G.P. Beretta, Mod. Phys. Lett. A 21, 2799 (2006).
  • [32] E. Schroedinger, Proc. Cambridge Phil. Soc. 32, 446 (1936).
  • [33] G.P. Beretta, Mod. Phys. Lett. A 20, 977 (2005).
  • [34] G.P. Beretta, Phys. Rev. E 73, 026113 (2006).
  • [35] See, e.g., R.C. Dewar, J. Phys. A 38, L371 (2005); P. Županović, D. Juretić, and S. Botrić, Phys. Rev. E 70 056108 (2004); H. Ozawa, A. Ohmura, R.D. Lorentz, amd T. Pujol, Rev. Geophys. 41, 1018 (2003); H. Struchtrup and W. Weiss, Phys. Rev. Lett. 80, 5048 (1998); and Ref. [30].
  • [36] G.P. Beretta, Found. Phys. 17, 365 (1987).
  • [37] G.P. Beretta, E.P. Gyftopoulos, J.L. Park, and G.N. Hatsopoulos, Nuovo Cimento B 82, 169 (1984); G.P. Beretta, E.P. Gyftopoulos, and J.L. Park, Nuovo Cimento B 87, 77 (1985).
  • [38] J. Maddox, Nature 316, 11 (1985).
  • [39] References [9, 10, 12, 20, 23, 25, 28, 36, 37, 38] are available online at www.quantumthermodynamics.org