Entropy generation periodic regenerative heat exchanger due to finite temperature difference

Bu çalışma bir rejeneratör ısı değiştiricisinin ikinci yasa analizini açıklamaktadır. Analizin temeli ısı değiştiricisinin boyutsuz periyot ve boyutsuz uzunluk adlı karakteristik büyüklükler tarafından belirlenmesidir. Duvar malzemesi yamuk kuralıyla elemanlara ayrılmış ve elemanlar termodinamik system olarak ele alınmıştır. İkinci yasa bu sistemlere uygulanmış ve entropi üretimi boyutsuz periyot (_) ve boyutsuz uzunluk (_) kullanılarak her eleman için hesaplanmıştır. Bu çalışmada entropi üretiminin boyutsuz periyot ve boyutsuz uzunlukla nasıl değiştiği incelenmiştir. Isı değiştiricinin etkenliğinin entropi üretimine etkisi üzerinde de durulmuştur.

Rejenaratör ısı değiştiricilerde sonlu sıcaklık farkı nedeniyle entropi üretimi

This paper describes the second law of thermodynamics analysis of a regenerative heat exchanger. The analysis is based on the fact that the dimensionless parameters, known as the reduced periods and reduced length, are the characteristic variables to describe the heat exchanger. The solid matrix in the heat exchanger passage is discretized using trapezoidal rule and the elemental matrix is taken as a thermodynamic system. The second law of thermodynamics is applied to the system and the entropy generation equation is obtained using the dimensionless numbers Reduced period (Π) and Reduced length (Λ) in each element. In the present paper, the variation of entropy generation due to reduced length and reduced period is studied. The influence of the effectiveness of the heat exchanger on entropy generation is also highlighted.

___

  • Bejan, A., 1996, Entropy Generation Minimization, CRC Press, New York.
  • Das, S. K., Sahoo, R. K, 1991, “Thermodynamic optimization of regenerators”, Cryogenics, Vol.31 (10), pp. 862-868.
  • Hausen, H., 1929, “The theory of heat exchange in regenerators”, Z. Ungew. Math. Mech. 9, pp.173-200.
  • Hill, A., Willmott, A. J., 1987, “A robust method for regenerative heat exchanger calculations”, Int. J Heat Mass Transfer. Vol. 30, No 2, pp.241-249.
  • Iliffe, E.,1948, “Thermal analysis of the contraflow regenerative heat exchanger”, J. Inst. Mech. Engrs, 159, pp. 363-372.
  • Lambert, J. D., 1981, Computational Methods in Ordinary Differential Equations, John Wiley, New York.
  • Nahavandi, N., Weinstein, A. S., 1961, A solution to the periodic-flow regenerative heat exchanger problem, Applied. Science. Res., 10, pp.335-348.
  • Poulikakos D, Bejan A., 1982, “Fin Geometry for Minimum Entropy Generation in Forced Convection”, Transactions of the ASME, Vol.104, pp. 616 - 623.
  • Razelos, P., 1979, “An analytic solution to the electric analog simulation of the regenerative heat exchanger with time varying fluid inlet temperatures”, Warme- u. Stofftibertr, 12, pp.59- 71.
  • Rice, R.G, Do D.D., 1995 Applied Mathematics and Modeling for chemical Engineers, John Wiley & Sons, New York.
  • Szargut J., 1980, “International Progress in Second Law Analysis”, Energy ,Vol.5, pp. 709-718.
  • Willmott, J., 1969, “The regenerative heat exchanger computer representation”, Int. J. Heat Mass Transfer 12, pp.997-1014.
  • Willmott J. and Hinchcliffe, C., 1976, “The effect of gas heat storage upon the performance of the thermal regenerator”, Int. J. Hear Mass Transfer, 19, pp.821-826.
  • Willnott J. and Thomas, R. J., 1974, “Analysis of the long contra-flow regenerative heat exchanger”, J. Inst. Maths Application. 14, pp.267-280.