Effects of the biomolecules:Vitamins,proteins,amino acids and surfactans: DTAB, MTOAC, TMSOI,orcinal on upper critical solution temparatures

Üst kritik çözelti sıcaklıkları (UCSTS± 0.05 K) ve phenol + su sistemlerinin karşılıklı çözünebilirlikleri, ayrı ayrı 0.5 millimol $kg^{-1}$ (mm $kg^{-1}$) proteinler (casein, pepsin, yumurta albümini), vitaminler ($B_1$ thiamine, $B_2$-riboflafın, $B_6$-pyridoxine), amino asitler (glycinen, $beta$-alanin, L-leucine) ve yüzey aktif maddeler (dodeciyl trimethylammonium bromide-DTAB, trimethylsulphoxonium iodide-TMSOI, methyl trioctylammonium chlroide-MTOAC, orcinol) için açıklandı. Katkı maddeleri, UCST'leri yaklaşık 0.5 - 2 K azaltmakta ve karşılıklı çözünebilirliklerde çok az zenginleştirme yapmakta, ancak iki -$CH_3$(methyl) ve iki -$CH_2$- (methylene) grupları ile leucine, çözünebilirlikte ihmal edilebilir bir artış sağlamaktadır. -$CH_3$ ve -$CH_2$- grupları daha şiddetli hidrofobik etkileşmeler geliştirmekte, ancak glycine -$N^+H_3$(amino) ve -$COO^-$ (carboxil) gruplar nedeniyle daha şiddetli hidrofilik etkileşmeler, ve tek -$CH_2$- grubu nedeniyle daha zayıf hidrofobik etkileşmeler yaratmaktadır. Leucine, phenol+suya nazaran çözünebilirliği 0.009 mol oranı kadar arttırmakta, USCT'de 0.7 K azaltmaktadır. Katkıların mol oranları 0.002 - 0.005 aralığında tutulmuş olup aminoasitlerin -$CH_3$ grupları yerine casein ve vitaminlerin konulması alt UCST değerlerindeki çözünebilirliği arttırmıştır.

Üst kritik çözelti sıcaklıklarına biyomoleküllerin: Vitaminler, proteinler, amino asitler ve yüzey aktif maddelerin: DTAB,MTOAC,TMSOI,ORCINAL etkileri

Upper critical solution temperatures (UCSTs ± 0.05 K) and mutual solubilities of phenol + water systems are reported separately with 0.5 millimol $kg^{-1}$ (mm $kg^{-1}$) proteins (casein, pepsin, egg-albumin), vitamins ($B_1$-thiamine, $B_2$-riboflavin, $B_6$-pyridoxine), amino acids (glycine, $beta$-alanine, L-leucine) and surfactants (dodecyl trimethylammonium bromide-DTAB, trimethylsulphoxonium iodide-TMSOI, methyltrioctylammonium chloride-MTOAC, orcinol). The additives decrease the UCSTs by about 0.50-2 0C with slight enhancement in mutual solubilities but the leucine with two –$CH_3$ (methyl) and two -$CH_2$- (methylene) groups produce negligible increase in the solubilities. The –CH3 and -$CH_2$- groups develop stronger hydrophobic interactions but the glycine develops stronger hydrophilic interactions due to –$N^+H_3$ (amino) and –$COO^-$ (carboxylic) groups and weaker hydrophobic due to single –$CH_2$- group. The leucine increases the solubility by 0.009 mole fractions with a 0.7 0C decrease in USCT as compared to phenol-water. The mole fractions of additives restricted to 0.002 to 0.005 range, the conjugations of casein and vitamins in place of –$CH_3$ groups of amino acids enhance the solubility with lower UCST values.

___

  • Bini, R., Bortolini, O., Chiappe, C., Pieraccini, D., Siciliano, T., 2007, “Development of Cation/Anion “Interaction” Scales for Ionic Liquids Through ESI-MS Measurements”, Journal of Physical Chemistry B, Vol. 111, No. 3, pp. 598-604.
  • Borghesani, G., Pedriali, R., Pulidori, F., Scaroni, I., 1986, “Solute-solute-solvent interactions in dilute aqueous solutions. Microcalorimetric study of isomeric butanediols”, Journal of Solution Chemical, Vol. 15, No. 5, pp. 397-408.
  • Borghesani, G., Pedriali, R., Pulidori, F., Scaroni, I., 1986, “Solute-solute-solvent interactions in dilute aqueous solutions. Microcalorimetric study of isomeric butanediols”, Journal of Solution Chemistry, Vol. 15, No. 5, pp 397-408.
  • Cascella, C., Castronuovo G., Elia, V., Sartorio, R., Wurzburger, S., 1990, “Hydrophobic interactions of alkanols. A calorimetric study in water at 298.15 K”, Journal of Chemical Society, Faraday Trans., Vol. 86, pp. 85 - 88.
  • Fried, V., Hameka, H.F., Blukis, U., 1977, Physical Chemistry, Macmillan/Collier Macmillan, New York/London, pp. 229-232.
  • Goodwin, J.W., Ottewill, R.H., Pelton, R., 1979, “Studies on the preparation and characterization of monodisperce polystyrene lattices V.: The preparation of cationic lattices”, Colloid Polymer Science, Vol. 257, pp. 61-69.
  • Ibrahim, Y., Mabrouki, R., Meat-Ner, M., El- Shall, M.S., 2007, “Hydrogen Bonding Interactions of Pyridine + with Water: Stepwise Solvation of Distonic Cations”, Journal of Physical Chemistry A, Vol. 10.1021, pp. 7390-7.
  • Lagi, M., Nostro, P.L., Fratini, E., Ninham, B.W., Baglioni, P., 2007, “Insights into Hofmeister Mechanism: Anion and Degassing Effects on the Cloud Point of Dioctanoylphosphatidylcholine/Water Systems”, Journal of Physical Chemistry B, Vol. 111, No. 3, pp. 589-597.
  • Misra, D.N., 1999, “Interaction of Citric or Hydrochloric acid with Calcium Fluorapatite: Precipitation of Calcium Fluoride”, Journal of Colloid and Interface Science., Vol. 220, No. 2, pp. 387-391.
  • Singh, M., Singhal, S., 2007, “Synthesis, Molecular Weight and Structural Determinations of (polyvinyl pyrrolidone)–Oximate Silico- Benzyol Glycine [POSBG] Copolymer with IR and NMR Spectroscopy”, Journal of Applied. Polymer Science, Vol. 104, No. 5, pp. 3261-3268.
  • Singh, M., 2006a, “Upper Critical Solution Temperatures for Immiscible Solvent Systems with Halides Salts, Carboxylic Acids, Surfactants and Polynuclear Aromatic Compounds and Benzene Derivatives”, Journal of Chemical Thermodynamics, Vol. 39, No. 2, pp. 240-246.
  • Singh, M., 2006b, “Measurements of Surface Tension and Viscosity of Liquids with Survismeter – A Green Chemistry Instrumental Approach”, Bulgarian Journal of Chemical Education, Vol. 15, No. 6, pp. 426-430.
  • Singh, M., 2006c , “Survismeter Type 1 and 2 for Surface Tension and Viscosity Measurements of Liquids for Academic, and Research and Development Studies”, Journal of Biochemical and Biophysical Methds, Vol. 67, pp. 151-161.
  • Singh, M., 2001, “Investigation on Iodine Partition Coefficient in Quaternary Liquid at 301.15 K”, Journal of Indian Chemical Society, Vol. 78, pp 397-402.
  • Singh, M., Kumar, A., 2006, “Hydrophobic Interactions of Methylureas in Aqueous Solutions Estimated with Density, Molal Volume, Viscosity and Surface Tension from 293.15 to 303.15 K”, Journal of Solution Chemistry , Vol. 35, No. 4, pp. 567-582.
  • Singh, M., 2007, “Study of apparent molal volume and viscosity of mutual citric acid and disodium hydrogen orthophosphate aqueous systems”, Journal of Chemical Sciences., Vol. 118, No. 3, pp. 269-274.
  • Singh, M., Pandey, M., Yadav, R.K., Verma, H.S., 2007, “Thermodynamic Studies of molar volume, pair and triplet interactions at increasing side-chain length of $beta$-amino acids in aqueous potassium chloride solutions at different concentration and 310.15 K”, Journal of Molecular Liqids, Vol. 135, pp. 188-191.
  • Zhang, F., Skoda, M.W.A., Jacobs, R.M.J., Martin, R.A., Martin, C.M., Schreiber, F., 2007, “Protein Interactions Studied by SAXS: Effect of Ionic Strength and Protein Concentration for BSA in Aqueous Solutions”, Journal of Physical Chemistry B, Vol. 111, No. 1, pp. 251-259.