Exergy of Nano-Particulate Materials

Nano-particle (NP) production processes may involve the use of significant amounts of complex chemicals. A more advanced approach for producing metallic NP materials may be the use of high voltage arc- or spark-driven systems. In addition to a reduction in chemicals use, the energy use of arcs/sparks exclusively in the form of electricity may be significantly less than the energy needs of waste stream processing from chemical usage, handling and post-treatment in nano-tech industry. Using exergy as a fundamental tool we assess the energy efficiency of NP material production, a subject obscured by lack of data and literature. One goal of this paper is to introduce a description of the exergy of NP materials and their processing. Silver, gold, copper, nickel, zinc and aluminium were taken as case studies. The results show that especially for NP material

___

  • Buonapart-e, EU FP7 project Better Up-scaling and Optimization of Nanoparticle and Nanostructure Production by Means of Electrical Discharges 201220 Available at: [Accessed 20.12.2012].
  • M. Stein, D. Kiesler, F.E. Kruis, Effect of carrier gas 20 40 60 80 100 Particle diameter D (nm) 50000 20 40 60 80 100 Ex er gy lo ss m elt v s. so lid ific at io n (J /k g) Particle diameter D (nm)