Thermo-mechanics in packed beds: Modeling and design of high temperature heat storage

Several novel power plant technologies, such as concentrating solar power (CSP) plants or adiabatic compressed air storage (ACAES), depend on heat storage systems as a central plant element. Where gaseous heat transfer media at elevated temperature levels are used, a regenerator-type heat storage is a particularly cost-effective solution. A large-scale design based on a packed bed inventory can further reduce investment costs, but is fraught with the risk of mechanical failures caused by the punctiform particle contacts. To be able to reduce such risks in a careful design, a simulation tool has been developed and successfully validated. It allows to predict the thermally induced mechanical loads during charge and discharge operation. As a calculation result, the model provides the time varying forces and displacements for each individual particle. The present paper outlines the underlying model equations and, by means of an illustrative example application, summarises the characteristic behaviour of such a setup.

___

  • S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, F. Göhring, E. Wahl, Jülich solar power tower – Experimental evaluation of the storage subsystem and performance calculation. Journal of Solar Energy Engineering, 133, 1019-1023, 2011.
  • S. Zunft, M. Hänel, M. Krüger, V. Dreißigacker, A design study for regenerator-type heat storage in solar tower plants – Results and conclusions of the HOTSPOT project. Energy Procedia, Elsevier, 19th SolarPACES Conference, Las Vegas (NV) USA, Sep. 2013.
  • S. Zunft, M. Krüger, V. Dreißigacker, P. M. Mayer, C. Niklasch, C. Bertsch, Adiabate Druckluftspeicher für die Elektrizitätsversorgung – der ADELE-Wärmespeicher. Kraftwerkstechnik, Bd. 4, Seiten 749-757. TK Verlag. 44. Deutschland, Oktober 2012. Kolloquium, Dresden
  • K. Stahl, S. Zunft, Entwicklung eines Hochtemperatur- Wärmespeichers zur Flexibilisierung von GuD- Kraftwerken. Kraftwerkstechnik, Bd. 4, Bd. 4, Seiten 777-784. TK Verlag. 44. Kraftwerkstechnisches Kolloquium, Dresden, Deutschland, Oktober 2012
  • R. H. Turner, High temperature thermal energy storage. Philadelphia, Pa.: Franklin, 1978.
  • R. L. Carl-Jochen, L. L. Sizmann, Vant-Hull: Solar Power Plants. Fundamentals, Technology, Systems, Economics, Springer-Verlag Springer, Berlin, 1991.
  • J. Reimann, E. Arbogast, M. Behnke, S. Müller, K. Thomauske, Thermomechanical behaviour of ceramic breeder and beryllium pebble beds. Fusion Engineering and Desgin, 49-50, 643-649, 2000.
  • P. A. Cundall, O. D. L. Strack, A discrete numerical model for granular assemblies. Géotechnique, 29, 47– 65, 1979.
  • S. Masson, J. Martinez, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technology, 109, 164– 178, 2000.
  • V. Dreißigacker, H. Müller-Steinhagen, S. Zunft, Thermo-mechanical analysis of packed beds for large- scale storage of high temperature heat. Heat Mass Transfer, 46, 1199-1207, 2010.
  • V. Dreißigacker, S. Zunft, H. Müller-Steinhagen, A thermo-mechanical model of packed bed storage and experimental validation. Applied Energy, 111, 1120- 1125, 2013.
  • I. KAR, Stuginsky R. A parametric study on possible fixed bed models for pcm and sensible heat storage. Applied Thermal Engineering, 19, 757-788, 1999.
  • H. Hausen, Wärmeübertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Springer, Heidelberg, Berlin, 1950.
  • F. W. Schmidt, A. J. Willmott, Thermal Energy Storage and Regeneration, New York: McGraw-Hill, 1981.
  • W. Schulle, Feuerfeste Werkstoffe. Deutscher Verlag für Grundstoffindustrie, 1990.
International Journal of Thermodynamics-Cover
  • ISSN: 1301-9724
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: -