Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon

Although the widespread introduction of numerical tools and the CFD models have improved the design methodology of thermoacoustic coolers and eased optimization of such units, high computational costs vitally limit their application in parametric analyses of thermoacoustic devices. Thus, experimental investigation remains essential field of research, considering design of such units. In the paper, the design and construction of an experimental setup, dedicated to perform an extensive multiparametric analyses on compact thermoacoustic devices with varying characteristic parameters, is discussed in detail. A complete design path, beginning with general consideration, with further detailed dimensioning and selection of market-available parts, ending with installation of control and data acquisition equipment, is described. Initial testing of the device, performed both computationally at the design stage and experimentally after the final setup assembling, is discussed as well. The results of the tests demonstrated ability to observe the variability in the operational parameters of the cooler following change in number of environmental and constructional parameters. The data acquired indicated vital importance of the stack porosity and frequency of the acoustic wave on performance of the thermoacoustic device, which corresponds to the data presented in the literature.

___

  • Tijani M.E.H., Zeegers J.C.H., de Waele A.T.A.M.: “Design of thermoacoustic refrigerators”, Cryogenics 42, 49-57, 2002
  • Swift G.W.: “Thermoacoustic Natural Gas Liquefier”, US DOE Natural Gas Conference Proceedings, Houston, 1997
  • Minner B.L., Braun J.E., Mongeau L.: “Optimizing the Design of a Thermoacoustic Refrigerator”, International Refrigeration and Air Conditioning Conference 1996, 343.
  • Russel D.A., Weibull P.: “Tabletop thermoacoustic refrigerator for demonstrations”, Am J Phys 70, 1231, 2002
  • Berson A., Michard M., Blanc-Benon P.: “Measurement of acoustic velocity in the stack of a thermoacoustic refrigerator using particle image velocimetry”, Heat Mass Transfer 44, 1015-1023, 2008
  • Rossing T.D. (ed.): Springer Handbook of Acoustics, Springer Science+Business Media LLC, New York 2007
  • Grzywnowicz K., Remiorz L.: “Design of simple refrigerating device for multiparametric analysis of the thermoacoustic cooling phenomenon”, in ECOS 2019. Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, pp. 227-238, 2019
  • Poese M.E., Smitth R.W., Garrett S.L., van Gerwen R., Gosselin P.: “Thermoacoustic refrigeration for ice cream sales”, Proceedings of the 6th IIR Gustav Lorentzen Conference, Glasgow, 2004
  • Kobayashi Y. et al.: “A unified stability analysis method for spontaneous oscillation conditions in thermoacoustic systems via measured frequency response data with application to standing- and traveling-wave engines”, J Sound Vib 456, 86-103, 2019
  • Rulik S. et al.: “Influence of duct parameters on the acoustic wave generation”, Int J Numer Method H, 2019, DOI: 10.1108/HFF-10-2018-0611
  • Harikumar G. et al.: “Thermoacoustic energy conversion in a square duct”, Enrgy Proced 158, 1811-1816, 2019
  • Kikuchi R et al.: “Measurement of performance of thermoacosutic heat pump in a -3 to 160 °C temperature range”, Jpn J Appl Phys 54, 117101, 2015
  • Tijani M.E.H., Spoelstra S.: High temperature thermoacoustic heat pump, Energy Research Centre of the Netherlands, 2012
  • Ke H.-B., Liu Y.-W., He Y.-L., Wang Y., Huang J.: “Numerical simulation and parameter optimization of thermo-acoustic refrigerator driven at large amplitude”, Cryogenics 50, 28-35, 2010
  • Symko O.G., Abdel-Rahman E., Kwon Y.S., Emmi M., Behunin R.: “Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics”, Microelec J 35, 185-191, 2004
  • Nowak I. et al: “Analytical and numerical approach in the simple modelling of thermoacoustic engines”, Int J Heat Mass Tran 77, 369-376, 2014
  • Zhu S.I., Yu G.Y., Dai W., Luo E.C., Wu Z.H., Zhang X.D.: “Characterization of a 300 Hz thermoacoustically-driven pulse tube cooler”, Cryogenics 49, 51-54, 2009
  • Hariharan N.M., Sivashanmugam P., Kasthurirengan S.: “Influence of stack geometry and resonator length on the performance of thermoacoustic engine”, Appl Acoust 73, 1052-1058, 2012
  • Spoelstra S.: THermoAcoustic Technology for Energy Applications. Final Report, Energy research Centre of the Netherlands, Petten, 2012
  • Lotton P., Blanc-Benon P., Bruneau M., Gusev V., Duffourd S., Mironov M., Poignand G.: “Transient temperature profile inside thermoacoustic refrigerators”, Int J Heat Mass Tran 52, 4986–4996, 2009
  • Michalski S., Grzywnowicz K., Remiorz L.: „Thermoacoustic cooling phenomenon - test stand conception”, Rynek Energii 133, 73-79, 2017
  • Tijani M.E.H.: Loudspeaker-driven thermo-acoustic refrigeration, Technische Universiteit Eindhoven, Eindhoven 2001
  • Alcock A.C., Tartibu L.K., Jen T.C.: “Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator”, Int J Refrig 94, 71-86, 2018
  • Rahman A.A., Zhang X.: “Single-objective optimization for stack unit of standing wave thermoacoustic refrigerator through fruit fly optimization algorithm”, Int J Refrig 98, 35-41, 2019
  • Yehui P., Heying F., Xiaoan M.: “Optimization of standing-wave thermoacoustic refrigerator stack using genetic algorithm”, Int J Refrig 92, 246-255, 2018
  • Kuzuu K., Hasegawa S.: “Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core”, Int J Heat Mass Tran 108, 1591-1601, 2017
  • Qiu L., Wang B., Sun D., Liu Y., Steiner T.: “A thermoacoustic engine capable of utilizing multi-temperature heat sources”, Energ Convers Manage 50, 3187-3192, 2009
  • Saechan P., Jaworski A.J.: “Numerical studies of co-axial travelling-wave thermoacoustic cooler powered by standing-wave thermoacoustic engine”, Renew Energ 139, 600-610, 2019
  • “Visaton K40 - 8 Ohm product card”, 01.10.2015, Visaton GmbH, Haan 2015
  • “ABS Material”, Eurapipe Duraflo product card, Euratech, Nilay 2017
  • Rogoziński K., Nowak I., Nowak G.: “Modeling the operation of a thermoacoustic engine”, Energy 138, 249-256, 2017