Techno-Economic and Enviroeconomic Analysis Review of Distinct Passive and Active Solar Distillation Still

Water scarcity is an issue that stems from the overconsumption and misuse of fresh water supplies, which leads to shortages and decreased quality of life. It most affects developing countries that do not have the infrastructure in place to mitigate these factors. Solar still become most suitable method for water purification in these types of places due to its cheapness and easily made from locally available materials. Current paper concentrate on a detailed techno-economic and enviroeconomic analysis of distinct configurations of active and passive solar distillation stills. Distilled water production, cost per litres, environmental cost comparison has been done between different types of passive and active solar still. Active solar still has a higher system cost compared to passive solar due to the addition of thermal energy by different components and mechanisms. Based on the results, minimum cost per litre is obtained for passive conventional solar still with the spherical ball as heat storage material and in case of active solar still, with PV module, reflectors, air-cooling technique are 0.0136 $/l and 0.0092 $/l, respectively. On the basis of energy, the highest environmental cost was found for AMSSFS air-cooled with evacuated mode (1456.38 $), while the lowest was found for active solar stills with N - Flat Plate Collectors (44 $).

___

  • Y. Wada et al., “Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches,” Geoscientific Model Development, vol. 9, no. 1, pp. 175–222, Jan. 2016, doi: 10.5194/gmd-9-175-2016.
  • Audrey Azoulay and Gilbert F. Houngbo, The United Nations World Water Development Report 3, vol. 9781849773. Paris: Routledge, 2012. doi: 10.4324/9781849773355.
  • A. S. Richey et al., “Quantifying renewable groundwater stress with GRACE,” Water Resources Research, vol. 51, no. 7, pp. 5217–5238, Jul. 2015, doi: 10.1002/2015WR017349.
  • WHO and UNICEF, “Progress on sanitation and drinking water: 2015 update and MDG assessment,” 2015. Accessed: Jun. 18, 2021. [Online]. Available: https://www.unwater.org/publications/whounicef-joint-monitoring-program-water-supply-sanitation-jmp-2015-update/
  • N. P. Cheremisinoff, “Handbook of water and wastewater treatment technonologies,” in Handbook of Water and Wastewater Treatment Technologies, Elsevier, 2002, p. ix. doi: 10.1016/B978-075067498-0/50001-2.
  • S. Bhojwani, K. Topolski, R. Mukherjee, D. Sengupta, and M. M. El-Halwagi, “Technology review and data analysis for cost assessment of water treatment systems,” Science of The Total Environment, vol. 651, Feb. 2019, doi: 10.1016/j.scitotenv.2018.09.363.
  • P. Glueckstern, “Cost estimates of large RO systems,” Desalination, vol. 81, no. 1–3, Jul. 1991, doi: 10.1016/0011-9164(91)85044-U.
  • F. H. ’ Kiang, S. Arasu, W. W. L. Yong, and D. D. Ratnayaka, “Supply of desalinated water by the private sector Singapore’s first public-privatepartnership initiative,” in IDA World Conference on Desalination and Water Reuse, Sep. 2005, pp. 11–16.
  • A. E. Kabeel, “Performance of solar still with a concave wick evaporation surface,” Energy, vol. 34, no. 10, Oct. 2009, doi: 10.1016/j.energy.2009.06.050.
  • T. Arunkumar et al., “An experimental study on a hemispherical solar still,” Desalination, vol. 286, pp. 342–348, Feb. 2012, doi: 10.1016/j.desal.2011.11.047.
  • Y. Taamneh and M. M. Taamneh, “Performance of pyramid-shaped solar still: Experimental study,” Desalination, vol. 291, Apr. 2012, doi: 10.1016/j.desal.2012.01.026.
  • S. Ravishankara, P. K. Nagarajan, D. Vijayakumar, and M. K. Jawahar, “Phase Change Material on Augmentation of Fresh Water Production Using Pyramid Solar Still,” International Journal of Renewable Energy Development, vol. 2, no. 3, Oct. 2013, doi: 10.14710/ijred.2.3.115-120.
  • P. K. Nagarajan et al., “Performance evaluation of triangular pyramid solar still for enhancing productivity of fresh water,” Research Journal of Pharmaceutical, Biological and Chemical Sciences, vol. 5, no. 2, pp. 764–771, 2014.
  • N. K. Dhiman, “Transient analysis of a spherical solar still,” Desalination, vol. 69, no. 1, Jan. 1988, doi: 10.1016/0011-9164(88)80005-5.
  • B. I. Ismail, “Design and performance of a transportable hemispherical solar still,” Renewable Energy, vol. 34, no. 1, Jan. 2009, doi: 10.1016/j.renene.2008.03.013.
  • A. Ahsan and T. Fukuhara, “Condensation mass transfer in unsaturated humid air inside tubular solar still,” Annual Journal Hydraulic Engineering, JSCE, vol. 28, pp. 31–42, 2010.
  • Z. M. Omara, A. E. Kabeel, and M. M. Younes, “Enhancing the stepped solar still performance using internal reflectors,” Desalination, vol. 314, Apr. 2013, doi: 10.1016/j.desal.2013.01.007.
  • G. N. Tiwari, S. K. Singh, and V. P. Bhatnagar, “Analytical thermal modelling of multi-basin solar still,” Energy Conversion and Management, vol. 34, no. 12, Dec. 1993, doi: 10.1016/0196-8904(93)90122-Q.
  • G. M. Cappelletti, “An experiment with a plastic solar still,” Desalination, vol. 142, no. 3, Mar. 2002, doi: 10.1016/S0011-9164(02)00203-5.
  • M. A. Hamdan, A. M. Musa, and B. A. Jubran, “Performance of solar still under Jordanian climate,” Energy Conversion and Management, vol. 40, no. 5, Mar. 1999, doi: 10.1016/S0196-8904(98)00134-4.
  • M. S. Sodha, A. Kumar, U. Singh, and G. N. Tiwari, “Further studies on double solar still,” International Journal of Energy Research, vol. 5, no. 4, 1981, doi: 10.1002/er.4440050405.
  • A. E. Kabeel, “Water production from air using multi-shelves solar glass pyramid system,” Renewable Energy, vol. 32, no. 1, Jan. 2007, doi: 10.1016/j.renene.2006.01.015.
  • N. Rahbar and J. A. Esfahani, “Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module,” Desalination, vol. 284, Jan. 2012, doi: 10.1016/j.desal.2011.08.036.
  • G. N. Tiwari, Madhuri, and H. P. Garg, “Effect of water flow over the glass cover of a single basin solar still with an intermittent flow of waste hot water in the basin,” Energy Conversion and Management, vol. 25, no. 3, Jan. 1985, doi: 10.1016/0196-8904(85)90049-4.
  • A. A. El-Sebaii, “Thermal performance of a triple-basin solar still,” Desalination, vol. 174, no. 1, Apr. 2005, doi: 10.1016/j.desal.2004.08.038.
  • S. A. El-Agouz, Y. A. F. El-Samadony, and A. E. Kabeel, “Performance evaluation of a continuous flow inclined solar still desalination system,” Energy Conversion and Management, vol. 101, Sep. 2015, doi: 10.1016/j.enconman.2015.05.069.
  • A. A. Badran, I. A. Al-Hallaq, I. A. Eyal Salman, and M. Z. Odat, “A solar still augmented with a flat-plate collector,” Desalination, vol. 172, no. 3, Feb. 2005, doi: 10.1016/j.desal.2004.06.203.
  • S. N. Rai and G. N. Tiwari, “Single basin solar still coupled with flat plate collector,” Energy Conversion and Management, vol. 23, no. 3, Jan. 1983, doi: 10.1016/0196-8904(83)90057-2.
  • S. N. Rai, D. K. Dutt, and G. N. Tiwari, “Some experimental studies of a single basin solar still,” Energy Conversion and Management, vol. 30, no. 2, Jan. 1990, doi: 10.1016/0196-8904(90)90026-U.
  • K. Voropoulos, E. Mathioulakis, and V. Belessiotis, “Experimental investigation of a solar still coupled with solar collectors,” Desalination, vol. 138, no. 1–3, Sep. 2001, doi: 10.1016/S0011-9164(01)00251-X.
  • Y. P. Yadav and A. S. Prasad, “Performance analysis of a high temperature solar distillation system,” Energy Conversion and Management, vol. 36, no. 5, May 1995, doi: 10.1016/0196-8904(95)98901-X.
  • H. Kargar Sharif Abad, M. Ghiasi, S. Jahangiri Mamouri, and M. B. Shafii, “A novel integrated solar desalination system with a pulsating heat pipe,” Desalination, vol. 311, Feb. 2013, doi: 10.1016/j.desal.2012.10.029.
  • S. K. Singh, V. P. Bhatnagar, and G. N. Tiwari, “Design parameters for concentrator assisted solar distillation system,” Energy Conversion and Management, vol. 37, no. 2, Feb. 1996, doi: 10.1016/0196-8904(95)00166-B.
  • Z. S. Abdel-Rehim and A. Lasheen, “Experimental and theoretical study of a solar desalination system located in Cairo, Egypt,” Desalination, vol. 217, no. 1–3, Nov. 2007, doi: 10.1016/j.desal.2007.01.012.
  • B. Chaouchi, A. Zrelli, and S. Gabsi, “Desalination of brackish water by means of a parabolic solar concentrator,” Desalination, vol. 217, no. 1–3, Nov. 2007, doi: 10.1016/j.desal.2007.02.009.
  • G. N. Tiwari and A. Kumar, “Nocturnal water production by tubular solar stills using waste heat to preheat brine,” Desalination, vol. 69, no. 3, Jan. 1988, doi: 10.1016/0011-9164(88)80032-8.
  • G. N. Tiwari and S. Sinha, “Parametric studies of active regenerative solar still,” Energy Conversion and Management, vol. 34, no. 3, Mar. 1993, doi: 10.1016/0196-8904(93)90136-X.
  • S. Kumar and A. Tiwari, “An experimental study of hybrid photovoltaic thermal (PV/T)‐active solar still,” International Journal of Energy Research, vol. 32, no. 9, Jul. 2008, doi: 10.1002/er.1388.
  • S. Kumar and G. N. Tiwari, “Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still,” Solar Energy, vol. 83, no. 9, Sep. 2009, doi: 10.1016/j.solener.2009.06.002.
  • S. Kumar and G. N. Tiwari, “Life cycle cost analysis of single slope hybrid (PV/T) active solar still,” Applied Energy, vol. 86, no. 10, Oct. 2009, doi: 10.1016/j.apenergy.2009.03.005.
  • G. C. Pandey, “Effect of dried and forced air bubbling on the partial pressure of water vapour and the performance of solar still,” Solar Energy, vol. 33, no. 1, 1984, doi: 10.1016/0038-092X(84)90111-7.
  • V. Velmurugan and K. Srithar, “Solar stills integrated with a mini solar pond — analytical simulation and experimental validation,” Desalination, vol. 216, no. 1–3, Oct. 2007, doi: 10.1016/j.desal.2006.12.012.
  • G. N. Tiwari and S. Suneja, “Performance evaluation of an inverted absorber solar still,” Energy Conversion and Management, vol. 39, no. 3–4, Feb. 1998, doi: 10.1016/S0196-8904(96)00227-0.
  • S. Kumar and K. T. Kurmaji, “Carbon credit earned by some designs of solar stills,” Desalination and Water Treatment, vol. 51, no. 22–24, Jun. 2013, doi: 10.1080/19443994.2013.770269.
  • A. E. Kabeel, K. Harby, M. Abdelgaied, and A. Eisa, “A comprehensive review of tubular solar still designs, performance, and economic analysis,” Journal of Cleaner Production, vol. 246, p. 119030, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.119030.
  • A. W. Jeevadason, S. Padmini, C. Bharatiraja, and A. E. Kabeel, “A review on diverse combinations and Energy-Exergy-Economics (3E) of hybrid solar still desalination,” Desalination, vol. 527, p. 115587, 2022, doi: https://doi.org/10.1016/j.desal.2022.115587.
  • O. Bait and M. Si–Ameur, “Enhanced heat and mass transfer in solar stills using nanofluids: A review,” Solar Energy, vol. 170, pp. 694–722, 2018, doi: https://doi.org/10.1016/j.solener.2018.06.020.
  • O. Bait, “Direct and indirect solar–powered desalination processes loaded with nanoparticles: A review,” Sustainable Energy Technologies and Assessments, vol. 37, p. 100597, 2020, doi: https://doi.org/10.1016/j.seta.2019.100597.
  • V. K. Dwivedi and G. N. Tiwari, “Thermal modeling and carbon credit earned of a double slope passive solar still,” Desalination and Water Treatment, vol. 13, no. 1–3, Jan. 2010, doi: 10.5004/dwt.2010.856.
  • Z. M. Omara, M. H. Hamed, and A. E. Kabeel, “Performance of finned and corrugated absorbers solar stills under Egyptian conditions,” Desalination, vol. 277, no. 1–3, pp. 281–287, Aug. 2011, doi: 10.1016/j.desal.2011.04.042.
  • T. Arunkumar et al., “An experimental study on a hemispherical solar still,” Desalination, vol. 286, pp. 342–348, Feb. 2012, doi: 10.1016/j.desal.2011.11.047.
  • T. Rajaseenivasan and K. Kalidasa Murugavel, “Theoretical and experimental investigation on double basin double slope solar still,” Desalination, vol. 319, Jun. 2013, doi: 10.1016/j.desal.2013.03.029.
  • P. U. Suneesh, R. Jayaprakash, T. Arunkumar, and D. Denkenberger, “Effect of air flow on ‘V’ type solar still with cotton gauze cooling,” Desalination, vol. 337, pp. 1–5, Mar. 2014, doi: 10.1016/j.desal.2013.12.035.
  • Z. M. Omara, A. E. Kabeel, A. S. Abdullah, and F. A. Essa, “Experimental investigation of corrugated absorber solar still with wick and reflectors,” Desalination, vol. 381, pp. 111–116, Mar. 2016, doi: 10.1016/j.desal.2015.12.001.
  • D. G. Harris Samuel, P. K. Nagarajan, R. Sathyamurthy, S. A. El-Agouz, and E. Kannan, “Improving the yield of fresh water in conventional solar still using low cost energy storage material,” Energy Conversion and Management, vol. 112, Mar. 2016, doi: 10.1016/j.enconman.2015.12.074.
  • T. Rajaseenivasan and K. Srithar, “Performance investigation on solar still with circular and square fins in basin with CO 2 mitigation and economic analysis,” Desalination, vol. 380, pp. 66–74, Feb. 2016, doi: 10.1016/j.desal.2015.11.025.
  • P. Pal, P. Yadav, R. Dev, and D. Singh, “Performance analysis of modified basin type double slope multi–wick solar still,” Desalination, vol. 422, Nov. 2017, doi: 10.1016/j.desal.2017.08.009.
  • S. M. Elshamy and E. M. S. El-Said, “Comparative study based on thermal, exergetic and economic analyses of a tubular solar still with semi-circular corrugated absorber,” Journal of Cleaner Production, vol. 195, Sep. 2018, doi: 10.1016/j.jclepro.2018.05.243.
  • P. Pal, R. Dev, D. Singh, and A. Ahsan, “Energy matrices, exergoeconomic and enviroeconomic analysis of modified multi–wick basin type double slope solar still,” Desalination, vol. 447, pp. 55–73, Dec. 2018, doi: 10.1016/j.desal.2018.09.006.
  • K. S. Reddy, H. Sharon, D. Krithika, and L. Philip, “Performance, water quality and enviro-economic investigations on solar distillation treatment of reverse osmosis reject and sewage water,” Solar Energy, vol. 173, Oct. 2018, doi: 10.1016/j.solener.2018.07.033.
  • K. v. Modi and J. G. Modi, “Performance of single-slope double-basin solar stills with small pile of wick materials,” Applied Thermal Engineering, vol. 149, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.12.071.
  • W.-L. Cheng, Y.-K. Huo, and Y.-L. Nian, “Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation,” Desalination, vol. 455, Apr. 2019, doi: 10.1016/j.desal.2019.01.007.
  • M. S. Yousef, H. Hassan, and H. Sekiguchi, “Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using different absorbing materials,” Applied Thermal Engineering, vol. 150, Mar. 2019, doi: 10.1016/j.applthermaleng.2019.01.005.
  • P. Dumka, A. Jain, and D. R. Mishra, “Energy, exergy, and economic analysis of single slope conventional solar still augmented with an ultrasonic fogger and a cotton cloth,” Journal of Energy Storage, vol. 30, p. 101541, 2020, doi: https://doi.org/10.1016/j.est.2020.101541.
  • H. Sharon, “Energy, exergy, environmental benefits and economic aspects of novel hybrid solar still for sustainable water distillation,” Process Safety and Environmental Protection, vol. 150, pp. 1–21, 2021, doi: https://doi.org/10.1016/j.psep.2021.04.003.
  • B. Benoudina, M. E. H. Attia, Z. Driss, A. Afzal, A. M. Manokar, and R. Sathyamurthy, “Enhancing the solar still output using micro/nano-particles of aluminum oxide at different concentrations: An experimental study, energy, exergy and economic analysis,” Sustainable Materials and Technologies, vol. 29, p. e00291, 2021, doi: https://doi.org/10.1016/j.susmat.2021.e00291.
  • J. A. Esfahani, N. Rahbar, and M. Lavvaf, “Utilization of thermoelectric cooling in a portable active solar still — An experimental study on winter days,” Desalination, vol. 269, no. 1–3, Mar. 2011, doi: 10.1016/j.desal.2010.10.062.
  • R. Dev and G. N. Tiwari, “Annual performance of evacuated tubular collector integrated solar still,” Desalination and Water Treatment, vol. 41, no. 1–3, Mar. 2012, doi: 10.1080/19443994.2012.664715.
  • Z. M. Omara, M. A. Eltawil, and E. A. ElNashar, “A new hybrid desalination system using wicks/solar still and evacuated solar water heater,” Desalination, vol. 325, Sep. 2013, doi: 10.1016/j.desal.2013.06.024.
  • M. A. Eltawil and Z. M. Omara, “Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air,” Desalination, vol. 349, Sep. 2014, doi: 10.1016/j.desal.2014.06.021.
  • M. R. Karimi Estahbanati, M. Feilizadeh, K. Jafarpur, M. Feilizadeh, and M. R. Rahimpour, “Experimental investigation of a multi-effect active solar still: The effect of the number of stages,” Applied Energy, vol. 137, Jan. 2015, doi: 10.1016/j.apenergy.2014.09.082.
  • D. B. Singh, J. K. Yadav, V. K. Dwivedi, S. Kumar, G. N. Tiwari, and I. M. Al-Helal, “Experimental studies of active solar still integrated with two hybrid PVT collectors,” Solar Energy, vol. 130, Jun. 2016, doi: 10.1016/j.solener.2016.02.024.
  • B. Praveen kumar, D. Prince Winston, P. Pounraj, A. Muthu Manokar, R. Sathyamurthy, and A. E. Kabeel, “Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method,” Desalination, vol. 435, Jun. 2018, doi: 10.1016/j.desal.2017.11.007.
  • O. Bait and M. Si–Ameur, “Numerical investigation of a multi-stage solar still under Batna climatic conditions: Effect of radiation term on mass and heat energy balances,” Energy, vol. 98, pp. 308–323, 2016, doi: https://doi.org/10.1016/j.energy.2016.01.017.
  • K. S. Reddy and H. Sharon, “Active multi-effect vertical solar still: Mathematical modeling, performance investigation and enviro-economic analyses,” Desalination, vol. 395, Oct. 2016, doi: 10.1016/j.desal.2016.05.027.
  • K. S. Reddy and H. Sharon, “Energy-environment-economic investigations on evacuated active multiple stage series flow solar distillation unit for potable water production,” Energy Conversion and Management, vol. 151, Nov. 2017, doi: 10.1016/j.enconman.2017.08.064.
  • A. Kr. Tiwari and A. Somwanshi, “Techno-economic analysis of mini solar distillation plants integrated with reservoir of garden fountain for hot and dry climate of Jodhpur (India),” Solar Energy, vol. 160, Jan. 2018, doi: 10.1016/j.solener.2017.11.078.
  • A. E. Kabeel and M. Abdelgaied, “Performance enhancement of a photovoltaic panel with reflectors and cooling coupled to a solar still with air injection,” Journal of Cleaner Production, vol. 224, Jul. 2019, doi: 10.1016/j.jclepro.2019.03.199.
  • P. Joshi and G. N. Tiwari, “Energy matrices, exergo-economic and enviro-economic analysis of an active single slope solar still integrated with a heat exchanger: A comparative study,” Desalination, vol. 443, pp. 85–98, Oct. 2018, doi: 10.1016/j.desal.2018.05.012.
  • D. B. Singh, “Exergo-economic, enviro-economic and productivity analyses of N identical evacuated tubular collectors integrated double slope solar still,” Applied Thermal Engineering, vol. 148, Feb. 2019, doi: 10.1016/j.applthermaleng.2018.10.127.
  • O. Bait, “Exergy, environ–economic and economic analyses of a tubular solar water heater assisted solar still,” Journal of Cleaner Production, vol. 212, Mar. 2019, doi: 10.1016/j.jclepro.2018.12.015.
  • E. M. S. El-Said, S. M. Elshamy, and A. E. Kabeel, “Performance enhancement of a tubular solar still by utilizing wire mesh packing under harmonic motion,” Desalination, vol. 474, Jan. 2020, doi: 10.1016/j.desal.2019.114165.
  • H. Hassan, M. S. Yousef, M. Fathy, and M. S. Ahmed, “Assessment of parabolic trough solar collector assisted solar still at various saline water mediums via energy, exergy, exergoeconomic, and enviroeconomic approaches,” Renewable Energy, vol. 155, pp. 604–616, 2020, doi: https://doi.org/10.1016/j.renene.2020.03.126.
  • R. Fallahzadeh, L. Aref, N. Gholamiarjenaki, Z. Nonejad, and M. Saghi, “Experimental investigation of the effect of using water and ethanol as working fluid on the performance of pyramid-shaped solar still integrated with heat pipe solar collector,” Solar Energy, vol. 207, pp. 10–21, 2020, doi: https://doi.org/10.1016/j.solener.2020.06.032.
  • S. Shoeibi, N. Rahbar, A. A. Esfahlani, and H. Kargarsharifabad, “Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation,” Renewable Energy, vol. 171, pp. 227–244, 2021, doi: https://doi.org/10.1016/j.renene.2021.02.081.
  • D. Mevada, H. Panchal, and K. K. Sadasivuni, “Investigation on evacuated tubes coupled solar still with condenser and fins: Experimental, exergo-economic and exergo-environment analysis,” Case Studies in Thermal Engineering, vol. 27, p. 101217, 2021, doi: https://doi.org/10.1016/j.csite.2021.101217.
  • Govind and G. N. Tiwari, “Economic analysis of some solar energy systems,” Energy Conversion and Management, vol. 24, no. 2, Jan. 1984, doi: 10.1016/0196-8904(84)90024-4.
  • A. E. Kabeel, A. M. Hamed, and S. A. El-Agouz, “Cost analysis of different solar still configurations,” Energy, vol. 35, no. 7, Jul. 2010, doi: 10.1016/j.energy.2010.03.021.
  • M. Sanserwal, A. Kumar Singh, and P. Singh, “Impact of materials and economic analysis of single slope single basin passive solar still: A review,” Materials Today: Proceedings, vol. 21, 2020, doi: 10.1016/j.matpr.2019.11.289.
  • B. K. Sovacool, “Valuing the greenhouse gas emissions from nuclear power: A critical survey,” Energy Policy, vol. 36, no. 8, Aug. 2008, doi: 10.1016/j.enpol.2008.04.017.
  • M. G. J. den Elzen et al., “The Copenhagen Accord: abatement costs and carbon prices resulting from the submissions,” Environmental Science & Policy, vol. 14, no. 1, Jan. 2011, doi: 10.1016/j.envsci.2010.10.010.
  • E. Deniz and S. Çınar, “Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification,” Energy Conversion and Management, vol. 126, Oct. 2016, doi: 10.1016/j.enconman.2016.07.064