Thermodynamics of CO2-MDEA using eNRTL with Differential Evolution Algorithm

Carbon dioxide (CO2) capture by absorption with aqueous alkanolamines is considered as an important technology to reduce CO2 emissions and to help alleviate global climate change. To understand more the thermodynamics of some of the CO2-Amines, the NRTL electrolyte model has been used to simulate the behaviour of carbon dioxide absorption by some amines. To determine NRTL interaction parameters of the model, VLE, heat capacity and excess enthalpy data have been used. In this study, carbon dioxide, water and Methyl DiEthanolAmine (MDEA) ternary system are used to calculate eNRTL (electrolyte Non-Ramdom Two Liquid) interaction parameters, and the system was modelled using VLE data available in the literature. Differential evolution algorithm (DE), an evolutionary computational technique, has been used to estimate NRTL parameters model to predict the VLE of CO2 with MDEA. Differential Evolution algorithm (DE) have been used to compare it with annealing (SA) and deterministic technique like Levenberg–Marquardt (LM) using one set of experimental data for MDEA-H2O system. Its standard deviation is lower than those of SA and LM algorithms when used to regress the eNRTL binary interactions parameters for MDEA-H2O.

___

  • Arcis, H.; Rodier, L.; Karine, B.-B.; Coxam, J.-Y (2009). Modeling of (Vapor + Liquid) Equilibrium and Enthalpy of Solution of Carbon Dioxide (CO2) in Aqueous Methyldiethanolamine (MDEA) Solutions. J. Chem. Thermodyn., 41, 783–789.
  • Aspen DataBank. (2010). Aspen Physical Property System, V7.2; Aspen Technology, Inc.: Burlington, MA.
  • Austgen, D. M.; Rochelle, G. T.; Chen, C.-C (1991). Model of Vapor- Liquid Equilibria for Aqueous Acid Gas- Alkanolamine Systems. 2. Representation of H2S and CO2 Solubility in Aqueous MDEA and CO2 Solubility in Aqueous Mixtures of MDEA with MEA or DEA. Ind. Eng. Chem. Res., 30, 543–555.
  • Babu, B.V., (2004). Process Plant Simulation. Oxford University Press, New Delhi, India
  • Alkanolamine Systems: An NMR Study. Ind. Eng.
  • Chem. Res., 44, 9894–9903.
  • Kuranov, G.; Rumpf, B.; Smirnova, N. A.; Maurer, G. (1996). Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N- Methyldiethanolamine in the Temperature Range 313- 413 K at Pressures up to 5 MPa. Ind. Eng. Chem. Res., 35, 1959–1966.
  • Maham, Y.; Mather, A. E.; Hepler, L. G. (1997). Excess Molar Enthalpies of (Water + Alkanolamine) Systems and Some Thermodynamic Calculations. J. Chem. Eng. Data, 42, 988–992.
  • Maham, Y.; Mather, A. E.; Mathonat, C. (2000). Excess properties of (alkyldiethanolamine + H2O) mixtures at temperatures from (298.15 to 338.15) K. J. Chem. Thermodyn. , 32, 229–236.
  • Mathonat, C. (1995). Calorimetrie de melange, a ecoulement, a temperatures et pressions elevees. Application a l’etude de l’elimination du dioxide de carbone a l’aide de solutions aqueuses d’alcanolamines, Universite Blaise Pascal, Paris, p 265.
  • Noll, O.; Valtz, A.; Richon, D.; Getachew-Sawaya, T.; Mokbel, I.; Jose, J. (1998). Vapor Pressures and Liquid Densities of N-Methylethanolamine, Diethanolamine, and N-Methyldiethanolamine. ELDATA: Int. Electron. J. Phys.-Chem. Data , 4, 105–120.
  • Posey, M. L. (1996). Thermodynamic Model for Acid Gas Loaded Aqueous Alkanolamine Solutions, Ph.D. Thesis, University of Texas at Austin, Austin, TX.
  • Storn, R.; Price, K. (1997). "Differential evolution - a simple and efficient heuristic for global optimization over Optimization 11: 341–359 Journal of Global
  • Thomsen, K.; Rasmussen, P. (1999). Modeling of Vapor- Liquid-Solid Equilibrium in Gas-Aqueous Electrolyte Systems. Chem. Eng. Sci., 54, 1787–1802.
  • Song, Y.; Chen, C.-C. (2009). Symmetric Electrolyte Nonrandom Two- Liquid Activity Coefficient Model. Ind. Eng. Chem. Res., 48, 7788– 7797.
  • Storn, S. J. (1997). Global Optim., 11, 341.
  • Van Ness, H. C.; Abbott, M. M.(1979). Vapor-Liquid Equilibrium: Part VI. Standard State Fugacities for Supercritical Components. AIChE J., 25, 645–653.
  • Versteeg, G. F.; Van Swaaij, W. P. M. (1988). Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions. J. Chem. Eng. Data , 33, 29– 34.
  • Voutsas, E.; Vrachnos, A.; Magoulas, K. (2004). Measurement and Thermodynamic Modeling of the Phase Equilibrium of Aqueous N-Methyldiethanolamine Solutions. Fluid Phase Equilib., 224, 193– 197.
  • Von Niederhausern, D. M.; Wilson, G. M.; Giles, N. F. (2006). Measurements for 17 Compounds by a Low Residence Time Flow Method. J. Chem. Eng. Data, 51, 1990– 1995. and Vapor Pressure
  • Wagman, D. D.; Evans, W. H.; Parker, V. B.; Schumm, R. H.; Halow, I.; Bailey, S. M.; Churney, K. L.; Nuttall, R. L. (1982). The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data, 11 (Supplement No. 2), p 2-32 and 2-83
  • Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. (1982). Solubility of N2O in Alkanolamines and in Mixed Solvents. Chem. Eng. J., 48, 31–40.
  • Weiland, R. H.; Dingman, J. C.; Cronin, D. B. (1997). Heat capacity Diethanolamine, N-Methyldiethanolamine, and N- Methyldiethanolamine-Based Blends with Carbon Dioxide. J. Chem. Eng. Data , 42, 1004–1006
  • Xu, S.; Qing, S.; Zhen, Z.; Zhang, C.; Carroll, J. (1991). Vapor Pressure Measurements of Aqueous N- Methyldiethanolamine Solutions. Fluid Phase Equilib., 67, 197–201.
  • Yan, Y.-Z.; Chen, C.-C, (2010). Thermodynamic Modeling of CO2 Solubility in Aqueous Solutions of NaCl and Na2SO4. J. Supercrit. Fluids. Volume 55, issue 2, p 623-634.
  • Zhang, Y & Chen, C-C (2010), Thermodynamic Modeling for CO2 Absorption in Aqueous MDEA Solution with Electrolyte NRTL Model, Ind. Eng. Chem. Res., 2011, 50 (1), p 163–175
  • Zhang, K.; Hawrylak, B.; Palepu, R.; Tremaine, P. R. (2002). Thermodynamics of Aqueous Amines: Excess Molar Heat Capacities, Volumes, and Expansibilities of (Water+ Methyldiethanolamine (MDEA)) and (Water + 2-Amino-2-methyl-1-propanol Thermodyn., 34, 679–710. (AMP)). J. Chem.