Inhibitory effect on acetylcholinesterase and toxicity analysis of some medicinal plants

This study aimed to analyse the inhibition of different extracts of Rosmarinus officinalis, Pistacia terebinthus and Sideritis dichotoma on acetylcholinesterase enzyme of Drosophila melanogaster. Additionally, the biological features including antioxidant activity, phenolic contents, antibacterial effects and in vivo toxicities were identified using radical scavenging, Folin-Ciocalteu, disc diffusion methods, and larval (eclosion) assay using Drosophila, respectively. Also, GC-MS was used to determine of the terpene-derivative compositions of the plants. IC50 values on acetylcholinesterase were determined between 0.57±0.02-2.54±0.11µg µL-1 for ethanol, 0.86±0.05-2.19±0.15µg µL-1 for methanol and 1.98±0.13-4.76±0.24µg µL-1 for water extracts. Inhibition types of Rosmarinus, Pistacia and Sideritis were uncompetitive, competitive and competitive, respectively. The antioxidant activities of the extracts were between 77.87±1.72-96.94±1.84% against DPPH and 90.57±2.18-98.18±2.36% against ABTS+ radicals. GC/MS results showed that carvacrol and thymol were the major monoterpenes of Pistacia and Sideritis, while limonene and borneol were the main monoterpenes of Rosmarinus. The strongest antibacterial activities were observed with Rosmarinus and Sideritis against Staphylococcus aureus and Escherichia coli, respectively with an inhibition zone larger than 15 mm. According to the in vivo toxicity study, all extracts were found non-toxic to Drosophila, and they ameliorated H2O2 induced decrease of puparation, survival rate and eclosion values.

Inhibitory effect on acetylcholinesterase and toxicity analysis of some medicinal plants

This study aimed to analyse the inhibition of different extracts of Rosmarinus officinalis, Pistacia terebinthus and Sideritis dichotoma on acetylcholinesterase enzyme of Drosophila melanogaster. Additionally, the biological features including antioxidant activity, phenolic contents, antibacterial effects and in vivo toxicities were identified using radical scavenging, Folin-Ciocalteu, disc diffusion methods, and larval (eclosion) assay using Drosophila, respectively. Also, GC-MS was used to determine of the terpene-derivative compositions of the plants. IC50 values on acetylcholinesterase were determined between 0.57±0.02-2.54±0.11µg µL-1 for ethanol, 0.86±0.05-2.19±0.15µg µL-1 for methanol and 1.98±0.13-4.76±0.24µg µL-1 for water extracts. Inhibition types of Rosmarinus, Pistacia and Sideritis were uncompetitive, competitive and competitive, respectively. The antioxidant activities of the extracts were between 77.87±1.72-96.94±1.84% against DPPH and 90.57±2.18-98.18±2.36% against ABTS+ radicals. GC/MS results showed that carvacrol and thymol were the major monoterpenes of Pistacia and Sideritis, while limonene and borneol were the main monoterpenes of Rosmarinus. The strongest antibacterial activities were observed with Rosmarinus and Sideritis against Staphylococcus aureus and Escherichia coli, respectively with an inhibition zone larger than 15 mm. According to the in vivo toxicity study, all extracts were found non-toxic to Drosophila, and they ameliorated H2O2 induced decrease of puparation, survival rate and eclosion values.

___

  • Adewusi, E.A., Moodley, N., & Steenkamp, V. (2011). Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. S. Afr. J. Bot., 77(3), 638-644. https://doi.org/10.1016/j.sajb.2010.12.009
  • Angelucci, F., Cechova, K., Amlerova, J., & Hort, J. (2019). Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation, 16(1), 108. https://doi.org/10.1186/s12974-019-1494-4
  • Assis, C.R.D., Linhares, A.G., Oliveira, V.M., França, R.C.P., Carvalho, E.V.M.M., Bezerra, R.S., & De Carvalho, L.B. (2012). Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci. Total Environ., 441, 141 150. https://doi.org/10.1016/j.scitotenv.2012.09.058
  • Bahadori, M.B., Dinparast, L., Valizadeh, H., Farimani, M.M., & Ebrahimi, S.N. (2016). Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. S. Afr. J. Bot., 106, 1 4. https://doi.org/10.1016/j.sajb.2015.12.003
  • Bastianetto, S., Ramassamy, C., Dore, S., Christen, Y., Poirier, J., & Quirion, R. (2000). The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur. J Neurosci., 12(6), 1882-1890. https://doi.org/10.1046/j.1460-9568.2000.00069.x
  • Blois, M.S., (1958). Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  • Bozin, B., Mimica-Dukic, N., Samojlik, I., & Jovin, E. (2007). Antimicrobial and Antioxidant Properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) Essential Oils. J. Agric. Food Chem., 55(19), 7879 7885. https://doi.org/10.1021/jf0715323
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C.T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: kinetic and computational studies. J. Enzyme Inhib. Med. Chem., 34(1), 429-437. https://doi.org/10.1080/14756366.2018.1543288
  • Chang, D., Liu, J., Bilinski, K., Xu, L., Steiner, G.Z., Seto, S.W., & Bensoussan, A. (2016). Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evidence-based Complementary and Alternative Medi., 2016, 1-15. https://doi.org/10.1155/2016/7293626
  • Chung, H., Sztal, T., Pasricha, S., Sridhar, M., Batterham, P., & Daborn, P.J. (2009). Characterization of Drosophila melanogaster cytochrome P450 genes. Proc. Natl. Acad. Sci., 106(14), 5731-5736. https://doi.org/10.1073/pnas.0812141106
  • Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., & Vasic, V.M. (2013). Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharm., 11(3), 315-335. https://doi.org/10.2174/1570159x11311030006
  • Dave, K. R., Syal, A. R., & Katyare, S. S. (2000). Tissue Cholinesterases. A Comparative Study of Their Kinetic Properties. Z Naturforsch. C, 55(1-2), 100-108. https://doi.org/10.1515/znc-2000-1-219
  • Depetris-Chauvin, A., Galagovsky, D., Chevalier, C., Maniere, G., & Grosjean, Y. (2017). Olfactory detection of a bacterial short-chain fatty acid acts as an orexigenic signal in Drosophila melanogaster larvae. Sci. Rep., 7(1). https://doi.org/10.1038/s41598-017-14589-1
  • Dhifi, W., Mnif, W., Ouerhani, B., & Ghrissi, K. (2012). Chemical Composition and Antibacterial Activity of Essential Oil from the Seeds of Pistacia terebinthus Grown in Tunisia. J. Essent. Oil Beari. Plants, 15(4), 582 588. https://doi.org/10.1080/0972060x.2012.10644092
  • Dogan, S., Diken, M. E., & Dogan, M. (2010). Antioxidant, phenolic and protein contents of some medicinal plants. J. Med. Plant Res., 4(23), 2566 2572. https://doi.org/10.5897/jmpr10.626
  • Doğan, S., Diken, M.E., Turhan, Y., Alan, Ü., Doğan, M., Alkan, M. (2011). Characterization and inhibition of Rosmarinus officinalis L. polyphenoloxidase. Eur. Food Res.Technol., 233, 293–301.
  • Durak, M.Z., & Uçak, G., (2015). Solvent optimization and characterization of fatty acid profile and antimicrobial and antioxidant activities of Turkish Pistacia terebinthus L. extracts. Turk J Agric For., 39, 10-19. https://doi.org/10.3906/tar-1403-63
  • Ellman, G.L., Courtney, K.D., Andres, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. pharmacol., 7(2), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Feng, Y., & Wang, X. (2012). Antioxidant therapies for Alzheimer's disease. Oxid Med Cell Longev, 2012, 472932. https://doi.org/10.1155/2012/472932
  • Fernández-López, J., Zhi, N., Aleson-Carbonell, L., Pérez-Alvarez, J.A., & Kuri, V. (2005). Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci., 69(3), 371-380. https://doi.org/10.1016/j.meatsci.2004.08.004
  • Fu, A.L., Li, Q., Dong, Z.H., Huang, S.J., Wang, Y.X., & Sun, M.J. (2004). Alternative therapy of Alzheimer's disease via supplementation with choline acetyltransferase. Neurosci. Lett., 368(3), 258-262. https://doi.org/10.1016/j.neulet.2004.05.116
  • Gonzalez-Burgos, E., & Gomez-Serranillos, M.P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem., 19(31), 5319-5341. https://doi.org/10.2174/092986712803833335
  • Johari, M.A., & Khong, H.Y. (2019). Total Phenolic Content and Antioxidant and Antibacterial Activities of Pereskia bleo. Adv. Pharmacol. Sci., 2019, 7428593. https://doi.org/10.1155/2019/7428593
  • Karimi, A., Majlesi, M., & Rafieian-Kopaei, M. (2015). Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 4, 27-30.
  • Kilic, T., Yildiz, Y.K., Goren, A.C., Tumen, G., & Topcu, G. (2003). Phytochemical Analysis of Some Sideritis Species of Turkey. Chem. Nat. Compd., 39(5), 453-456. https://doi.org/10.1023/b:conc.0000011119.53554.9c
  • Liu, Q.F., Lee, J.H., Kim, Y.-M., Lee, S., Hong, Y.K., Hwang, S., . . . Cho, K.S. (2015). In vivo screening of traditional medicinal plants for neuroprotective activity against Aβ42 cytotoxicity by using Drosophila models of Alzheimer’s disease. Biol. Pharm. Bull., 38(12), 1891-1901. https://doi.org/10.1248/bpb.b15-00459
  • Macedo, G.E., Gomes, K.K., Rodrigues, N.R., Martins, I.K., Wallau, G.D.L., Carvalho, N.R. D., . . . Posser, T. (2017). Senecio brasiliensis impairs eclosion rate and induces apoptotic cell death in larvae of Drosophila melanogaster.Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol., 198, 45-57. https://doi.org/10.1016/j.cbpc.2017.05.004
  • Orhan E.I., Senol, F.S., Gulpinar, A.R., Sekeroglu, N., Kartal, M., & Sener, B. (2012). Neuroprotective potential of some terebinth coffee brands and the unprocessed fruits of Pistacia terebinthus L. and their fatty and essential oil analyses. Food chem., 130(4), 882-888. https://doi.org/10.1016/j.foodchem.2011.07.119
  • Orhan, I., Aslan, S., Kartal, M., Şener, B., & Hüsnü Can Başer, K. (2008). Inhibitory effect of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Food chem., 108(2), 663-668. https://doi.org/10.1016/j.foodchem.2007.11.023
  • Ozarowski, M., Mikolajczak, P.L., Bogacz, A., Gryszczynska, A., Kujawska, M., Jodynis-Liebert, J., . . . Mrozikiewicz, P.M. (2013). Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia, 91, 261-271. https://doi.org/10.1016/j.fitote.2013.09.012
  • Ozarowski, M., Mikolajczak, P.L., Piasecka, A., Kujawski, R., Bartkowiak-Wieczorek, J., Bogacz, A., . . . Seremak- Mrozikiewicz, A. (2017). Effect of Salvia miltiorrhiza root extract on brain acetylcholinesterase and butyrylcholinesterase activities, their mRNA levels and memory evaluation in rats. Physiol. Behav., 173, 223 230. https://doi.org/10.1016/j.physbeh.2017.02.019
  • Perry, N.S.L., Houghton, P.J., Theobald, A., Jenner, P., & Perry, E.K. (2000). In-vitro Inhibition of Human Erythrocyte Acetylcholinesterase by Salvia lavandulae folia Essential Oil and Constituent Terpenes. J. Pharm. Pharmacol., 52(7), 895 902. https://doi.org/10.1211/0022357001774598
  • Ramassamy, C. (2006). Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: A review of their intracellular targets. Eur. J. Pharmacol., 545(1), 51-64. https://doi.org/10.1016/j.ejphar.2006.06.025
  • Rand, M.D., Montgomery, S.L., Prince, L., & Vorojeikina, D. (2014). Developmental toxicity assays using the Drosophila model. Curr. Protoc. Toxicol., 59(1). https://doi.org/10.1002/0471140856.tx0112s59
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  • Riaz, B., Zahoor, M.K., Zahoor, M.A., Majeed, H.N., Javed, I., Ahmad, A., . . . Sultana, K. (2018). Toxicity, phytochemical vomposition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster. Evid Based Complement Alternat Med, 2018, 2325659. https://doi.org/10.1155/2018/2325659
  • Şenol, F.S., Orhan, I., Celep, F., Kahraman, A., Doğan, M., Yilmaz, G., & Şener, B. (2010). Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food chem., 120(1), 34-43. https://doi.org/10.1016/j.foodchem.2009.09.066
  • Wang, R., Yan, H., & Tang, X.C. (2006). Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta. Pharmacol. Sin., 27(1), 1-26. https://doi.org/10.1111/j.1745-7254.2006.00255.x
  • Yakovleva, E.U., Naimark, E.B., & Markov, A.V. (2016). Adaptation of Drosophila melanogaster to unfavorable growth medium affects lifespan and age-related fecundity. Biochem. (Moscow), 81(12), 1445-1460. https://doi.org/10.1134/s0006297916120063
  • Zhang, Y., Liu, X., Wang, Y., Jiang, P., & Quek, S. (2016). Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control, 59, 282-289. https://doi.org/10.1016/j.foodcont.2015.05.032
  • Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid. Med. Cell. Longev., 2013, 316523. https://doi.org/10.1155/2013/316523
International Journal of Secondary Metabolite-Cover
  • Başlangıç: 2014
  • Yayıncı: İzzet KARA
Sayıdaki Diğer Makaleler

In vitro production of tropane alkaloids from Brugmansia suaveolens

Tijen TALAS OĞRAŞ, Elif TAHTASAKAL, Selma ÖZTÜRK

The effect of salinity stress on germination parameters in Satureja thymbra L. (Lamiaceae)

Ummahan ÖZ

Inhibitory effect on acetylcholinesterase and toxicity analysis of some medicinal plants

Mehmet Emin DİKEN, Begümhan YILMAZ

Synthesis of Some Alkyl Polyglycosides

Volkan DEMİREL, Ramazan DONAT

LC-MS/MS analyses and biological activities of Onosma sintenisii and O. mutabile

Mehmet Sabih OZER, Kemal Erdem ŞENCAN, Cengiz SARIKÜRKCÜ, Bektas TEPE

A review on essential oil analyses and biological activities of the traditionally used medicinal plant Thymus vulgaris L

Md Amzad HOSSAİN, Yahya Bin Abdullah ALRASHDİ, Salem Al TOUBY

Comparison of three different protocols of alkaloid extraction from Glaucium corniculatum plant

Fatma Gonca KOÇANCI, Serap NİĞDELİOĞLU DOLANBAY, Belma ASLIM

Persea americana Mill.: As a potent quorum sensing inhibitor of Pseudomonas aeruginosa PAO1 virulence

Fatma Tuğçe GÜRAĞAÇ DERELİ, Ebru ÖNEM, Ayşe Gül ÖZAYDIN, Evren ARIN, Muhammed Tilahun MUHAMMED

Curvularia lunata: A fungus for possible berberine transformation

Deniz YILMAZ, Fatma Gizem AVCI, Berna SARIYAR AKBULUT

Acute toxicity, phenol content, antioxidant and postprandial anti-diabetic activity of Echinops spinosus extracts

Kaoutar BENRAHOU, Latifa DOUDACH, Hanaa Naceiri MRABTİ, Otman EL GUOURRAMİ, Gokhan ZENGİN, Abdelhakim BOUYAHYA, Yahia CHERRAH, My El Abbes FAOUZİ