Optimization of Cooling Load for Different Greenhouse Models in Malaysia

Optimization of Cooling Load for Different Greenhouse Models in Malaysia

In this paper, the building energy analysis program (DOE-2.1E) is used to investigate the reduction in thermal gains and cooling load for agricultural greenhouse. The greenhouse  located in Kuala Lumpur (latitude =3.12o and longitude = -101.60o) and designed with a modified arch roof type with a length of  6 m, width of 3 m, gutter and gable heights of 2.4 m and 0.6 m, respectively. Three models such as:  (1) an internal, movable 50% shade screen mounted directly above the floor, with a span of 3 m from gutter to gutter; (2) a double envelope roof that is elevated 0.6 m from the ceiling; and (3) an internal, movable shade screen with a double envelope roof have been selected for comparison with the original greenhouse. The comparison is based on thermal gains and cooling load. The results showed that the internal, movable 50% shade screen was found to be the most effective in reducing maximum cooling load requirement (at 14.89%); the double envelope roof models with and without shading reduced maximum cooling load by 10.11 % and 9.39 %, respectively.

___

  • Dilip Jain, Gopal Nath Tiwari, “Modeling and optimal design of evaporative cooling system in controlled environment greenhouse”, Energy Convers. Manage, vol.43, pp. 2235-2250, February 2002.
  • José Pérez-Alonso,Ángel J. Callejón-Ferre, Ángel Carreño-Ortega, Julián Sánchez-Hermosilla, “Approach to the evaluation of the thermal work environment in the greenhouse-construction industry of SE Spain”, Build Environ, vol.46, pp. 1725-1734,March 2011.
  • Elisabeth Gratia, Andre´ De Herde, “Greenhouse effect in double-skin façade”, Energy Build, vol.39, pp. 199- , July 2007.
  • F. A. Hashem, M. A. Medany, E. M. Abd El-Moniem, M. M. F. Abdallah, “Influence of green-house cover on potential requirements”, Anna. Agricul. Sci, vol.56, pp. 49-55, August 2011. and cucumber water
  • Keesung Kim, Jeong-Yeol Yoon, Hyuck-Jin Kwon, Jin- Hee Han, Jung Eek Son, Sang-Woon Nam, Gene A. Giacomelli, In-Bok Lee, “3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers”, Biosyst. Eng, vol. 100, pp. 245-255, May 2008.
  • Perdigones, J. L. Garcı´a, A. Romero, A. Rodrı´guez, L. Luna, C. Raposo, S. de la Plaza, “Cooling strategies for greenhouses in summer: Control of fogging by pulse width modulation”, Biosyst. Eng, vol.99, pp. 573-586, March 2008.
  • M. Teitel, M. Atias, M. Barak, “Gradients of temperature, humidity and CO2 a long a fan-ventilated greenhouse”, Biosyst. Eng, vol.106, 166-174, April 2010.
  • H. Toida, K. Ohyama, T. Kozai, Handarto, M. Hayashi, “A Method for measuring Dry bulb Temperatures during the Operation of a Fog System for Greenhouse Cooling”, Biosyst. Eng, vol.93, pp. 347–351, January 2006.
  • N. Katsoulas, T. Bartzanas, T. Boulard, M. Mermier, C. Kittas, “Effect of Vent Openings and Insect Screens on Greenhouse”, Ventilation Biosyst. Eng, vol.93, pp. 427– , March 2006.
  • V.P. Sethi, S. K. Sharma, “Greenhouse heating and cooling using aquifer water”, Energy, vol.32, pp. 1414– , December 2007.
  • V. P. Sethi, “ On the selection of shape and orientation of greenhouse for composite climates”, Int. J. of Sustainable Energy, vol.28, pp. 45-58, December D. P. Kothari, K. C. Singal , Bakesh Ranjan, Renewable energy sources and emerging technologies. Prentice-Hall of India, New Delhi, 2008.
  • Ganguly, S. Ghosh, ”Modeling and analysis of a fan–pad ventilated floricultural greenhouse”, Energy Build, vol.39, pp. 1092-1097, December 2007.
  • Wee Fong Lee, Cooling capacity assessment of semi-closed greenhouse, Master degree, Agricultural Biological Engineering. The Ohio State University, 2010.
  • K.Kulkarni, P. K. Sahoo, M. Mishra, “Optimization of cooling load for a lecture theatre in a composite climate in India”, Energy Build, vol.43, pp. 1573-1579, March 2011.
International Journal Of Renewable Energy Research-Cover
  • ISSN: 1309-0127
  • Başlangıç: 2015
  • Yayıncı: İlhami ÇOLAK
Sayıdaki Diğer Makaleler

Performance Measurement of a Two-Stage Two-Bladed Savonius Rotor

Kaushal Kumar SHARMA, Rajat GUPTA, Agnimitra BİSWAS

Simulation of Solar-Photovoltaic Hybrid Power Generation System with Energy Storage and Supervisory Control for Base Transceiver Station (BTS) Site Located in Rural Nigeria

Vincent Anayochukwu Ani, Emmanuel Onyeka Ani

Aerodynamic Design of a Horizontal Axis Micro Wind Turbine Blade Using NACA 4412 Profile

Sandip Achutrao KALE, Ravindra N. VARMA

Design of a Transformer-less Grid-Tie Inverter Using Dual-Stage Buck and Boost Converters

Sajib CHAKRABORTY, Md. Abdur RAZZAK

Utilization of Gas Turbine Generator Exhaust (GTGE) into DC Energy (A Survey)

Syifaul Fuada Fuada

A Review of the Status of Wind Energy Utilisation in Nigeria

Muhammad Tanko Baba, Isa Garba

Standalone Photovoltaic System Sizing using Peak Sun Hour Method and Evaluation by TRNSYS Simulation

Dimas Firmanda Al RİZA, Syed İhtshamul-haq GİLANİ

Performance Evaluation of a Horizontal Air Staged Inclined Biomass-to-Heat Energy Converter for Drying Paper Egg Trays

Kok Hing CHONG, Puong Ling LAW, Rigit Andrew Ragai HENRY, Baini RUBİYAH, Faridah Saleh SHANTİ

Experimental Evaluation of Matrix Converter for Wind Energy Conversion System Under Various Abnormal Conditions

Vinod Kumar, Raghuveer raj Joshi, R. R. JOSHİ, Ramesh C. Bansal

A Micro-scale Wind Turbine Fed BLDC Motor for Electric Vehicle Drive Application

Saeed Masoumi Kazraji, Saheb Khanabdal, Ramin Bavil Soflaye, Mehran Sabahi