Investigation of Some Parameters Which Affects into the Efficiency of Quantum Dot Intermediate Band Solar Cell

Investigation of Some Parameters Which Affects into the Efficiency of Quantum Dot Intermediate Band Solar Cell

In this paper, Quantum dots intermediate band solar cell (QDIBSC) is used to the enhancement of the power conversion efficiency of solar cell. The main advantage of this type is that it preserves large open-circuit voltage with increasing the produced photocurrent in the solar cell. For a best efficiency of one-intermediate band solar cell (one-IBSC), the induced detailed balance efficiency is determined as a function of changing locations of intermediate-band (IB) by using the blackbody. The QDs have the ability to confirm the chosen higher efficiency by assigning the appropriate values of quantum dot width size (QDW) and barrier thickness (BT). It means that the best location of IB in solar cell is realized. The results show that to obtain the maximum power conversion efficiency of QDIBSC, the QDWs and BTs for nanostructured model (Al0.4Ga0.6As/In0.42Ga0.58As) are limited by a surface contour. The highest power efficiencies in this located contour are 45.32% and 62.81% for QDWs = (1.60 nm, 1.64 nm) and BTs = (1.98 nm, 1.94 nm) for 1 sun and maximum light concentrations; respectively.

___

  • P. Balaji, B. M. Babu, and A. Shafarna, “Modeling of Solar Cell Using Odd Size Quantum Dots”, International Journal on Advanced Electrical and Electronics Engineering, IJAEEE, Vol. 1, Issue 1, 2012.
  • K. Sablon, J. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, “Strong Enhancement of Solar Cell Efficiency Due to Quantum Dots with Built-In Charge”, NanoLett., 11, pp. 2311-2317, 2011.
  • K. Yoshida, Y. Okada, and N. Sano, “Device Simulation of Intermediate Band Solar Cells: Dependence on Number of Intermediate Band Layers”, 38th Photovoltaic Specialists Conference (PVSC), IEEE, pp. 1669 – 1672, 2012.
  • K. Tanabe, D. Guimard, D. Bordel, R. Morihara, M. Nishioka, InAs/GaAs Quantum Dot Solar Cells by MOCVD”, 38th Photovoltaic Specialists Conference (PVSC), IEEE, pp. 1929 – 1930, 2012. Arakawa, “High-Efficiency
  • C. Lin, W. Liu, and C. Yu Shih, “Detailed balance model for intermediate band solar cells with photon conservation”, Optics Express, Vol. 19, Issue 18, pp. 16927 – 16933, 2011.
  • S. P. Bremner, A. Pancholi, K. Ghosh, S. Dahal, G. M. Liu, K. Y. Ban, M. Y. Levy, and C. B. Honsberg, “Growth of InAs Quantum Dots on GaAsSb for the Realization of a Quantum Dot Solar Cell”, 33rd Photovoltaic Specialists Conference (PVSC), IEEE, pp. 1 - 6, 2008.
  • D. Qing-Wen, W. Xiao-Liang, Y. Cui-Bai, X. Hong- Ling, W. Cui-Mei, Y. Hai-Bo, H. Qi-Feng, B. Yang, L. Jin-Min, W. Zhan-Guo, and H. Xun, “Computational Investigation Intermediate-Band Solar Cell”, Chinese Physics Letters, Vol. 28, No. 1, 2011. Quantum-Dot
  • P. G. Linares, A. Marti, E. Antolin, I. Ramiro, E. Lopez, C. D. Farmer, C. R. Stanley, and A. Luque, “Low- Temperature Concentrated Light Characterization Applied to Intermediate Band Solar Cells”, IEEE Journal of Photovoltaics, Vol. 3, No. 2, 2013.
  • D. Farrell, Y. Takeda, K. Nishikawa, T. Nagashima, T. Motohiro, N. Ekins-Daukes, and Y. Okada, “A NEW TYPE OF HOT-CARRIER SOLAR CELL UTLISING THERMAL UP AND DOWN CONVERSION OF SUNLIGHT”, Appl. Phys. Lett. 99, 111102, 2011.
  • Q. Xiaosheng, Z. Sisi, B. Hongyin, and X. Liling, “The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells”, Journal of semiconductor, Vol. 34, No. 6, pp. 062003-1 - 062003-5, 2013.
  • E. O. Chukwuocha, and M. C. Onyeaju, “Effect of Quantum Confinement on the Wavelength of CdSe, ZnSand GaAs Quantum Dots (Qds)”, International Journal of Scientific & Technology Research, Vol. 1, Issue 7, 2012.
  • E. Antolin, A. Marti, and A. Luque, “The Lead Salt Quantum Dot Intermediate Band Solar Cell”, 37th Photovoltaic Specialists Conference (PVSC), IEEE, pp. 1907-1912, 2011.
  • L. Kosyachenko, “Solar Cells – New Aspects and Soluations”, InTech, Online published, ISBN 978-953- 307-761-1, 2011.
  • A. Ogura, T. Morioka, P. Garcia, E. Hernandez, I. Ramiro, E. Antolin, A. Marti, A. Luque, M. Yamaguchi, and Y. Okada, “Modelling of Quantum Dot Solar Cells for Concentrator PV Applications”, 37th Photovoltaic Specialists Conference (PVSC), IEEE, pp. 2642 - 2645, 2011.
  • J. Ojajarvi, “Tetrahedral chalcopyrite quantum dots in solar-cell applications”, Msc., Jyvaskyla University, Finland, 2010.
  • E. J.Steven, “Quantum Dot Intermediate Band Solar Cells: Design Criteria and Optimal Materials”, PhD, Drexel University, Philadelphia, Pennsylvania, USA, 2012.
  • N. G. Anderson, “On quantum well solar cell efficiencies”, Physica E, 14, pp. 126 - 131, 2002.
  • A. Luque and A. Marti, “Thermodynamic consistency of sub-bandgap absorbing solar cell proposals”, IEEE Transactions on Electron Devices, 49, pp. 2118 – 2124, 2001.
  • W. van Roosbroeck, W. Shockley, “Photon-Radiative Recombination of Electrons and Holes in Germanium”, Phys. Rev. 94, pp. 1558-1560, 1954.
  • A. Marti, L. Cuandra, and A. Luque, “Quantum dot intermediate band solar cell”, 28th IEEE PVSC, pp. 940 – 943, 2000.
  • A. Luque, A. Mart, ”Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels”, Phys. Rev. Lett. 78, 1997.
  • A. Mart, E. Antolin, C. R. Stanley, C. D. Farmer, N. Lopez, P. Diaz, E. Canovas, P. G. Linares, A. Luque, “Production of photocurrent due to intermediate to conduction band transitions: a demonstration of a key operating principle of the intermediate band solar cell”, Physical Review Letters 97, 2006.
  • A. Luque, A. Mart, “The intermediate band solar cell: progress toward the realization of an attractive concept”, Advanced Materials 22, pp. 160-174, 2010.
  • A. Luque, A. Mart, C. Stanley, “Understanding intermediate band solar cells”, Nature Photonics 6, 2012.
  • Y. Okada, T. Morioka, K. Yoshida, R. Oshima, Y. Shoji, T. Inoue, T. Kita, “Increase in photocurrent by optical transitions via intermediate quantum states in direct doped InAs/GaNAs strain compensated quantum dot solar cell”, Journal of Applied Physics 109, 2011.
  • A. Mart, D. Fuertes Marron, A. Luque, “Evaluation of the efficiency potential of intermediate band solar cells based on thin film chalcopyrite materials”, Journal of Applied Physics 103, 2008.
  • D. Fuertes Marron, A. Mart, A. Luque, “Thin-film intermediate band chalcopyrite solar cells”, Thin Solid Films 517, 2009.
  • A. Luque, A. Mart, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, P. Diaz, “Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band”, Journal of Applied Physics 99, 2006.
  • A. Mart, L. Cuadra, A. Luque, “Quasi-drift diffusion model for the quantum dot intermediate band solar cell”, IEEE Transactions on Electron Devices 49, 2002.
  • K. Tanabe, K. Watanabe, Y. Arakawa, Thin film InAs/GaAs quantum dot solar cells layer transferred onto Si substrates and flexible plastic films”, 38th IEEE PVSC, 2012.
  • A. Mart, N. Lopez, E. Antolin, E. Canovas, A. Luque, C. R. Stanley, C. D. Farmer, P. Diaz, “Emitter degradation in quantum dot intermediate band solar cells”, Applied Physics Letters 90, 2007.
  • S. M. Hubbard, C. G. Bailey, C. D. Cress, S. Polly, J. Clark, D. V. Forbes, R. P. Raffaelle, S. G. Bailey, C. M. Wilt, “Short circuit current enhancement of GaAs solar cells using strain compensated InAs quantum dots”, 33rd IEEE PVSC, pp. 1-6, 2008.
  • S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, D. M. Wilt, “Effect of strain compensation on quantum dot enhanced GaAs solar cells”, Applied Physics Letters 92, 2008.
  • K. Akahane, N. Yamamoto, T. Kawanishi, “Fabrication of ultra high density InAs quantum dots using the strain compensation technique”, Physica Status Solidi A 208, 2011.
  • W. Shockley and H.J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells”, J. Appl. Phys. 32, pp. 510-519, 1961.
  • C. Linge, “Modeling of the Intermediate Band Tandem Solar Cell Using the AM1.5 Spectra”, MSc. Thesis, Department of Physics, University of Science and Technology, Norwegian, 2011.
  • A. Kurome, R. Morigaki, S. Souma, and M. Ogawa, “Analysis of Electronic Structure in Quantum Dot Arrays for Intermediate Band Solar Cells”, IMFEDK, Kansai, pp. 114-115, 2011.
  • R. Aguinaldo, “Modeling Solutions and Simulations for Nanostructures”, M.Sc in Materials Science & Engineering, College of Science, Rochester Institute of Technology, Rochester, NY, 2008. Based on
  • A. Aly, A. Nasr, “Theoretical Performance of Solar Cell based on Mini-bands Quantum Dots”, Journal of Applied Physics, Volume 115, Issue 114311, 2014.
  • M. Y. Levy, C. Honsberg , A. Marti, and A. Luque, “Quantum dot intermediate band solar cell material systems-with negligible valence band offsets”, Photovoltaic Specialists Conference, 31st IEEE, 2005.
  • S. P. Day, “The Kronig-Penney Approximation: May It Live On”, IEEE Transactions on Education, Vol. 33, No. 4, 1990.
  • M. Ferhat, “Computational Optical bandgap Bowing of III-V Semiconductors Alloys”, Phys. Stat. Sol., Vol. 241, No. 10, pp. 38-41, 2004.
  • I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band Parameters Semiconductors and their Alloys”, Journal of Applied for Physics, Vol. 89, No. 11, pp. 5815 – 5875, 2001.
  • V. Popescu, G. Bester, M. Hanna, A. Norman, and A. Zunger, “Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells”, Physical review B 78, pp. 205321(1-17) , 2008.
  • A. Kechiantz, A. Afanasev, and J. Lazzan, “Modification of band alignment at interface of AlyGa1- ySb/AlxGa1-xAs type-II quantum dots by concentrated sunlight in intermediate band solar cells with separated absorption and depletion regions”, SPIE Photonics West, San Francisco, CA, USA, 2013.
  • S. Lade, and A. Zahedi, “A revised ideal model for AlGaAs/GaAs Microelectronics Journal 35, pp. 401-410, 2004. well solar cells”,
International Journal Of Renewable Energy Research-Cover
  • ISSN: 1309-0127
  • Başlangıç: 2015
  • Yayıncı: İlhami ÇOLAK
Sayıdaki Diğer Makaleler

Pitch Control of Wind Turbines Using IT2FL Controller Versus T1FL Controller

Behzad BAHRAMİNEJAD, Mohammad Reza IRANPOUR, Ehsan ESFANDİARİ

Optimal Sizing of Hybrid Energy System Using Ant Colony Optimization

Payal Suhane

MW Level Solar Powered Combined Cycle Plant with Thermal Storage: Thermodynamic Performance Prediction

Soumitra Mukhopadhyay, Sudip Ghosh

Effect of Environmental Conditions on Single and Double Diode PV system : Comparative Study

Ankit Gupta, Pawan Kumar, Rupendra Pachauri, Yogesh Kumar Chauhan

Optimization of Parameters for Purification of Jatropha Curcas Based Biodiesel Using Organic Adsorbents

Sangita BANGA, Pradeep K VARSHNEY, Naveen KUMAR, Madan PAL

Statistical Modelling of Wind Speed Data for Mauritius

Asma Zaynah DHUNNY, Roddy Michel LOLLCHUND, Ravindra BOOJHAWON, Soonil D.d.v. RUGHOOPUTH

Numerical Analysis of Effect of Pitch Angle on a Small Scale Vertical Axis Wind Turbine

Bose Sumantraa R., Chandramouli S., Premsai T. P., Prithviraj P., Vivek Mugundhan, Ratna Kishore Velamati

Study of Oscillatory Flow Heat Exchanger Used in Hybrid Solar System Fitted With Fixed Reflectors

VISHNU NARAYAN PALASKAR, SURESH PANDURANG DESHMUKH

An Alternative Model of Overshot Waterwheel Based on a Tracking Nozzle Angle Technique for Hydropower Converter

Lie Jasa, Ardyono Priyadi, Mauridhi Hery PURNOMO

Multiplier Effects on Socioeconomic Development from Investment in Renewable Energy Projects in Egypt: DESERTEC Versus Energy for Local Consumption Scenarios

Noran Mohamed FARAG, Nadejda KOMENDANTOVA