Göreli Uniform Modelde Elektromanyetik Alan

Elektromanyetik alanın potansiyelleri ve alan kuvvetleri, parçacıkların ve alanın enerjileri, değişmez yük yoğunluğuna sahip göreceli olarak uniform yüklü sistem için hesaplanır. Rölativistik yaklaşım ile klasik uniform modeli arasındaki fark gösterilmektedir. Sonuç olarak, genel manyetik alanın yokluğunda, skaler alan potansiyeline bağlı parçacıkların enerjisinin, Hamiltonian sistemin bir parçası olan elektromanyetik alanın tensör değişmezinin yardımıyla belirlenen enerji kadar mutlak değerde iki kat daha fazla olduğu sonucuna varılmıştır.

The Electromagnetic Field in the Relativistic Uniform Model

The potentials and the field strengths of the electromagnetic field, the energies of particles and of the field are calculated for the relativistic uniformly charged system with invariant charge density. The difference between the relativistic approach and the classical uniform model is shown. The conclusion is proved that in the absence of the general magnetic field the energy of particles, associated with the scalar field potential, is twice as large in the absolute value as the energy, determined with the help of the tensor invariant of the electromagnetic field, which is part of the system’s Hamiltonian. 

___

  • Fedosin, S.G., 2012a. The radius of the proton in the self-consistent model. Hadronic Journal, 35(4):349-363.
  • Fedosin, S.G., 2012b. The Hamiltonian in covariant theory of gravitation. Advances in Natural Science, 5(4):55-75.
  • Fedosin, S.G., 2014a. The integral energy-momentum 4-vector and analysis of 4/3 problem based on the pressure field and acceleration field. American Journal of Modern Physics, 3(4):152-167.
  • Fedosin, S.G., 2014b. The procedure of finding the stress-energy tensor and equations of vector field of any form. Advanced Studies in Theoretical Physics, 8(18):771-779.
  • Fedosin, S.G., 2015. Relativistic energy and mass in the weak field limit. Jordan Journal of Physics, 8(1):1-16.
  • Fedosin, S.G., 2016a. Estimation of the physical parameters of planets and stars in the gravitational equilibrium model. Canadian Journal of Physics, 94(4):370-379.
  • Fedosin, S.G., 2016b. About the cosmological constant, acceleration field, pressure field and energy. Jordan Journal of Physics, 9(1):1-30.
  • Fedosin, S.G., 2016c. The virial theorem and the kinetic energy of particles of a macroscopic system in the general field concept. Continuum Mechanics and Thermodynamics, 29(2):361-371.
  • Feynman, R., Leighton, R., Sands, M., 1964. The Feynman lectures on physics. 2: Addison Wesley.
  • Huang, K., 1987. Statistical mechanics (2nd ed.). John Wiley and Sons. pp. 136-138.
  • Kelly, J.J., 2001. Nucleon charge and magnetization densities. arXiv:hep-ph/0111251. https://arxiv.org/abs/hep-ph/0111251
  • Yakhshiev, U., Kim, H.C., 2013. Transverse charge densities in the nucleon in nuclear matter. Physics Letters B, 726(1–3):375-381.