SARS-CoV-2’nin Hızlı Tespiti İçin Tasarlanan Biyosensörler

Şiddetli akut solunum sendromu koronavirüs 2’nin (SARS-CoV-2) dikkat çekici bir hızla yayılması sonucunda 2019 yılında dünya çapında “salgın” olarak nitelendirilmeye başlanmıştır. COVID-19 hastalarına yapılan testlerde yanlış negatif ve yanlış pozitif sonuçlar, geniş bir popülasyona yapılan tespit testlerinin uzun süre alması ayrıca yüksek maliyeti ve sağlık personellerinin yaşadığı sıkıntılar göz önüne alındığında dünyanın daha hızlı hareket etmesi gerekmektedir. Bu yüzden COVID-19 virüsünü kontrol altına alabilmek için etkili, hızlı ve son derece hassas yöntemlere ihtiyaç duyulmaya başlanmıştır. SARS-CoV-2 ile enfekte olan hastaların teşhisi ve izolasyon süreçlerinin başlamasıyla birçok şirket ve enstitü başta SARS-CoV-2’nin proteinleri olmak üzere antikorlar, antijenler üzerinde çalışarak virüsün hızlı tespitine yönelik testler geliştirmeye başlamıştır. Bu derlemede SARS-CoV-2 virüsünün yapısını, SARS-CoV-2 için yapılan tespit testleri, tespit testlerinde yaşanan problemleri ve SARS-CoV-2’nin hızlı tespiti için tasarlanan biyosensörleri tartışmaktayız.

Biosensors Designed for Rapid Detection of SARS-CoV-2

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started to be described as "epidemic" worldwide in 2019 as a result of the remarkable rapid spread. Considering the false negative and false positive results in the tests performed on COVID-19 patients, the long duration of the detection tests performed on a large population, the high cost and the difficulties experienced by the healthcare personnel, the world should move faster. Therefore, effective, fast and highly sensitive methods are needed to control the COVID-19 virus. With the diagnosis and isolation processes of patients infected with SARS-CoV-2, many companies and institutes have started to develop tests for rapid detection of the virus by working on antibodies and antigens, especially proteins of SARS-CoV-2. In this review, we discuss the structure of the SARS-CoV-2 virus, detection tests for SARS-CoV-2, problems encountered in detection tests, and biosensors designed for rapid detection of SARS-CoV-2.

___

  • 1. Samson, Rachel, Govinda R. Navale, and Mahesh S. Dharne. 2020. "Biosensors: Frontiers In Rapid Detection Of COVID-19". 3 Biotech 10 (9). doi:10.1007/s13205-020-02369-0.
  • 2 Santiago, Ibon. 2020. "Trends And Innovations In Biosensors For COVID‐19 Mass Testing". Chembiochem 21 (20): 2880-2889. doi:10.1002/cbic.202000250.
  • 3. 2021. News.Google.Com. https://news.google.com/covid19/map?hl=tr&gl=TR&ceid=TR%3Atr.
  • 4. Cui, Feiyun, and H. Susan Zhou. 2020. "Diagnostic Methods And Potential Portable Biosensors For Coronavirus Disease 2019". Biosensors And Bioelectronics 165: 112349. doi:10.1016/j.bios.2020.112349.
  • 5. "Timeline: WHO's COVID-19 Response". 2021. Who.Int. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline?gclid=Cj0KCQiAjKqABhDLARIsABbJrGkBCTtCPJXLfoCfNZMtJ07uGZZcSYdjrFqtCA-XgdvnhpoWGtPikMsaAiFAEALw_wcB#event-115.
  • 6. Fehr, Anthony R., and Stanley Perlman. 2015. "Coronaviruses: An Overview Of Their Replication And Pathogenesis". Coronaviruses, 1-23. doi:10.1007/978-1-4939-2438-7_1. 7. Weiss, Susan R., and Julian L. Leibowitz. 2011. "Coronavirus Pathogenesis". Advances In Virus Research, 85-164. doi:10.1016/b978-0-12-385885-6.00009-2.
  • 8. Cui, Jie, Fang Li, and Zheng-Li Shi. 2018. "Origin And Evolution Of Pathogenic Coronaviruses". Nature Reviews Microbiology 17 (3): 181-192. doi:10.1038/s41579-018-0118-9.
  • 9. Ludwig, Stephan, and Alexander Zarbock. 2020. "Coronaviruses And SARS-Cov-2: A Brief Overview". Anesthesia & Analgesia 131 (1): 93-96. doi:10.1213/ane.0000000000004845.
  • 10. Woo, Patrick C. Y., Susanna K. P. Lau, Yi Huang, and Kwok-Yung Yuen. 2009. "Coronavirus Diversity, Phylogeny And Interspecies Jumping". Experimental Biology And Medicine 234 (10): 1117-1127. doi:10.3181/0903-mr-94.
  • 11. "SARS-Cov-2 (2019-Ncov) Antigen Reagents". 2021. Sinobiological.Com. https://www.sinobiological.com/research/virus/2019-ncov-antigen.
  • 12. Hurst, Kelley R., Cheri A. Koetzner, and Paul S. Masters. 2009. "Identification Of In Vivo-Interacting Domains Of The Murine Coronavirus Nucleocapsid Protein". Journal Of Virology 83 (14): 7221-7234. doi:10.1128/jvi.00440-09.
  • 13. Escors, David, Javier Ortego, Hubert Laude, and Luis Enjuanes. 2001. "The Membrane M Protein Carboxy Terminus Binds To Transmissible Gastroenteritis Coronavirus Core And Contributes To Core Stability". Journal Of Virology 75 (3): 1312-1324. doi:10.1128/jvi.75.3.1312-1324.2001.
  • 14. Tortorici, M. Alejandra, and David Veesler. 2019. "Structural Insights Into Coronavirus Entry". Advances In Virus Research, 93-116. doi:10.1016/bs.aivir.2019.08.002.
  • 15. Jia, Hong Peng, Dwight C. Look, Lei Shi, Melissa Hickey, Lecia Pewe, Jason Netland, Michael Farzan, Christine Wohlford-Lenane, Stanley Perlman, and Paul B. McCray. 2005. "ACE2 Receptor Expression And Severe Acute Respiratory Syndrome Coronavirus Infection Depend On Differentiation Of Human Airway Epithelia". Journal Of Virology 79 (23): 14614-14621. doi:10.1128/jvi.79.23.14614-14621.2005.
  • 16. "SARS-Cov-2 Reagents - COVID-19 Antibodies | Prosci Inc.". 2021. Prosci-Inc.Com. https://www.prosci-inc.com/covid-19/.
  • 17. Duffy, Siobain, Laura A. Shackelton, and Edward C. Holmes. 2008. "Rates Of Evolutionary Change In Viruses: Patterns And Determinants". Nature Reviews Genetics 9 (4): 267-276. doi:10.1038/nrg2323. 18. Lai, M. 1992. "RNA Recombination In Animal And Plant Viruses.". Microbiological Reviews 56 (1): 61. https://www.ncbi.nlm.nih.gov/pmc/articles
  • 19. Chen, Long, Jing Xiong, Lei Bao, and Yuan Shi. 2020. "Convalescent Plasma As A Potential Therapy For COVID-19". The Lancet Infectious Diseases 20 (4): 398-400. doi:10.1016/s1473-3099(20)30141-9.
  • 20. Rabiee, Navid, Mojtaba Bagherzadeh, Amir Ghasemi, Hossein Zare, Sepideh Ahmadi, Yousef Fatahi, and Rassoul Dinarvand et al. 2020. "Point-Of-Use Rapid Detection Of SARS-Cov-2: Nanotechnology-Enabled Solutions For The COVID-19 Pandemic". International Journal Of Molecular Sciences 21 (14): 5126. doi:10.3390/ijms21145126.
  • 21. Soler, Maria, Maria Carmen Estevez, Maria Cardenosa-Rubio, Alejandro Astua, and Laura M. Lechuga. 2020. "How Nanophotonic Label-Free Biosensors Can Contribute To Rapid And Massive Diagnostics Of Respiratory Virus Infections: COVID-19 Case". ACS Sensors 5 (9): 2663-2678. doi:10.1021/acssensors.0c01180.
  • 22. Woo, Patrick C. Y., Susanna K. P. Lau, Yixin Chen, Emily Y. M. Wong, Kwok-Hung Chan, Honglin Chen, Libiao Zhang, Ningshao Xia, and Kwok-Yung Yuen. 2018. "Rapid Detection Of MERS Coronavirus-Like Viruses In Bats: Potential For Tracking MERS Coronavirus Transmission And Animal Origin". Emerging Microbes & Infections 7 (1): 1-7. doi:10.1038/s41426-017-0016-7.
  • 23. Mathuria, Jitendra Prasad, Ramakant Yadav, and Rajkumar. 2020. "Laboratory Diagnosis Of SARS-Cov-2 - A Review Of Current Methods". Journal Of Infection And Public Health 13 (7): 901-905. doi:10.1016/j.jiph.2020.06.005.
  • 24. Zhen, Wei, Elizabeth Smith, Ryhana Manji, Deborah Schron, and Gregory J. Berry. 2020. "Clinical Evaluation Of Three Sample-To-Answer Platforms For Detection Of SARS-Cov-2". Journal Of Clinical Microbiology 58 (8). doi:10.1128/jcm.00783-20.
  • 25. Ji, Tianxing, Zhenwei Liu, GuoQiang Wang, Xuguang Guo, Shahzad Akbar khan, Changchun Lai, and Haoyu Chen et al. 2020. "Detection Of COVID-19: A Review Of The Current Literature And Future Perspectives". Biosensors And Bioelectronics 166: 112455. doi:10.1016/j.bios.2020.112455.
  • 26. Pan, Lei, Mi Mu, Pengcheng Yang, Yu Sun, Runsheng Wang, Junhong Yan, and Pibao Li et al. 2020. "Clinical Characteristics Of COVID-19 Patients With Digestive Symptoms In Hubei, China". The American Journal Of Gastroenterology 115 (5): 766-773. doi:10.14309/ajg.0000000000000620.
  • 27. Pan, Yang, Luyao Long, Daitao Zhang, Tingting Yuan, Shujuan Cui, Peng Yang, Quanyi Wang, and Simei Ren. 2020. "Potential False-Negative Nucleic Acid Testing Results For Severe Acute Respiratory Syndrome Coronavirus 2 From Thermal Inactivation Of Samples With Low Viral Loads". Clinical Chemistry 66 (6): 794-801. doi:10.1093/clinchem/hvaa091.
  • 28. Lv, Lin, Xiaoqing Xie, Qiyu Gong, Ru Feng, Xiaokui Guo, Bing Su, and Lei Chen. 2020. "Transcriptional Difference Between SARS-COV-2 And Other Human Coronaviruses Revealed By Sub-Genomic RNA Profiling". doi:10.1101/2020.04.16.043224.
  • 29. Togay, Alper, Yılmaz, Nisel.2020. Laboratory Diagnosis of SARS-CoV-2. The Journal Of Tepecik Education And Research Hospital. doi: 10.5222/terh.2020.13007
  • 30. PMC, Europe. 2021. "Europe PMC". Europepmc.Org. https://europepmc.org/article/pmc/pmc67
  • 31. Backer, Jantien A, Don Klinkenberg, and Jacco Wallinga. 2020. "Incubation Period Of 2019 Novel Coronavirus (2019-Ncov) Infections Among Travellers From Wuhan, China, 20–28 January 2020". Eurosurveillance 25 (5). doi:10.2807/1560-7917.es.2020.25.5.2000062.
  • 32. Murugan, Divagar, Himanshu Bhatia, V. V. R. Sai, and Jitendra Satija. 2020. "P-FAB: A Fiber-Optic Biosensor Device For Rapid Detection Of COVID-19". Transactions Of The Indian National Academy Of Engineering 5 (2): 211-215. doi:10.1007/s41403-020-00122-w.
  • 33. Seo, Giwan, Geonhee Lee, Mi Jeong Kim, Seung-Hwa Baek, Minsuk Choi, Keun Bon Ku, and Chang-Seop Lee et al. 2020. "Rapid Detection Of COVID-19 Causative Virus (SARS-Cov-2) In Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor". ACS Nano 14 (4): 5135-5142. doi:10.1021/acsnano.0c02823.
  • 34. Mahari, Subhasis, Akanksha Roberts, Deepshikha Shahdeo, and Sonu Gandhi. 2020. "Ecovsens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device For Rapid Detection Of Ncovid-19 Antigen, A Spike Protein Domain 1 Of SARS-Cov-2". doi:10.1101/2020.04.24.059204.
  • 35. Djaileb, Abdelhadi, Benjamin Charron, Maryam Hojjat Jodaylami, Vincent Thibault, Julien Coutu, Keisean Stevenson, and Simon Forest et al. 2020. "A Rapid And Quantitative Serum Test For SARS-Cov-2 Antibodies With Portable Surface Plasmon Resonance Sensing". doi:10.26434/chemrxiv.12118914.v1.
  • 36. "Dual-Functional Plasmonic Photothermal Biosensors For Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection". 2021. ACS Nano. https://pubs.acs.org/doi/10.1021/acsnano.
  • 37. Bhalla, Nikhil, Yuwei Pan, Zhugen Yang, and Amir Farokh Payam. 2020. "Opportunities And Challenges For Biosensors And Nanoscale Analytical Tools For Pandemics: COVID-19". ACS Nano 14 (7): 7783-7807. doi:10.1021/acsnano.0c04421.
  • 38. Roether, Johanna, Kang-Yu Chu, Norbert Willenbacher, Amy Q. Shen, and Nikhil Bhalla. 2019. "Real-Time Monitoring Of DNA Immobilization And Detection Of DNA Polymerase Activity By A Microfluidic Nanoplasmonic Platform". Biosensors And Bioelectronics 142: 111528. doi:10.1016/j.bios.2019.111528.
  • 39. Bhalla, Nikhil, Yuwei Pan, Zhugen Yang, and Amir Farokh Payam. 2020. "Opportunities And Challenges For Biosensors And Nanoscale Analytical Tools For Pandemics: COVID-19". ACS Nano 14 (7): 7783-7807. doi:10.1021/acsnano.0c04421.
  • 40. Sara, Rampazzi, Giovanni, Danese, Francesco, Leporati and Franco, Marabelli,2021 "A Localized Surface Plasmon Resonance-Based Portable Instrument for Quick On-Site Biomolecular Detection," in IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 2, pp. 317-327, Feb. 2016, doi: 10.1109/TIM.2015.2465691.
  • 41. Wei, Qingshan, Hangfei Qi, Wei Luo, Derek Tseng, So Jung Ki, Zhe Wan, and Zoltán Göröcs et al. 2013. "Fluorescent Imaging Of Single Nanoparticles And Viruses On A Smart Phone". ACS Nano 7 (10): 9147-9155. doi:10.1021/nn4037706.
  • 42. Xu, L., Li, D., Ramadan, S., Li, Y., & Klein, N. (2020). Facile biosensors for rapid detection of COVID-19. Biosensors And Bioelectronics, 170, 112673. doi: 10.1016/j.bios.2020.11267343.
  • 43. Jeong, Hyoyoung, John A. Rogers, and Shuai Xu. 2020. "Continuous On-Body Sensing For The COVID-19 Pandemic: Gaps And Opportunities". Science Advances 6 (36): eabd4794. doi:10.1126/sciadv.abd4794.