Biyoteknolojide Biyosensör ve Biyoçip Uygulamaları

Biyosensörler esas itibarıyla, bir biyo algılama materyali ve bir transdüser içerir. Biyolojik ve kimyasal etken maddelerin tespitinde kullanılır. Enzimler, antikorlar, nükleik asit çalışmaları, hücreler, dokular ve organelleri içeren biyolojik algılama malzemeleri, elektrokimyasal, optik, piezoelektrik, termal ve manyetik cihazlar gibi hedef analitleri ve transdüserleri seçici olarak tespit edebilir ve nicel olarak görüntüleyebilir. Biyoçipler, biyolojik olarak kullanılabilen mikroişlemciler olarak tanımlanır. Bir biyoçip, ultraminyatürize test tüpleri seti olarak algılanabilir. Bu sistem pek çok testin aynı anda ve çok hızlı bir biçimde yapılabilmesine imkân sağlar. Biyoçip aynı zamanda, bir numuneden birçok farklı bölgeye bakabilme avantajı da sunar. Son yıllarda biyomedikal uygulamalarında biyosensör ve biyoçipler sıklıkla tercih edilmektedir. Çünkü biyosensörler ve biyoçipler hastalıkların erken tanısında ve yaşam kalitesinin yükseltilmesinde önemli bir yere sahiptir. Nanoteknoloji veya chip teknolojisi kullanılarak geliştirilen yeni nesil biyosensörler, sonuçların daha kolay izlenmesi ve değerlendirilmesini sağlamaktadır. İnsanlar atomları anlamaya, atomları yeniden düzenlemeye, birçok yapıyı atomik (mikro, nano vb. Ölçeklere) boyutlara indirgemeye çalışırken birçok icat ortaya çıkmıştır. Bunlardan biri şüphesiz MEMS teknolojisidir. Bu çalışmada, biyosensör ve biyoçip uygulamaları üzerine yapılan çalışmalar incelenmiştir. Yeni teknolojinin kullanım alanları araştırılmıştır. Biyosensör ve biyoçip alanında yapılan uygulamalar incelenmiştir.

Biosensor and Biochip Applications in Biotechnology

The biosensors essentially comprise a biosensing material and a transducer. It is used in the determination of biological and chemical active substances. Biosensing materials including enzymes, antibodies, nucleic acid studies, cells, tissues and organelles can selectively identify and quantitatively display target analytes and transducers such as electrochemical, optical, piezoelectric, thermal and magnetic devices. Biochip, at the same time offers the advantage looking at many different regions from one sample. In recent years biosensors and biochips have been frequently preferred in biomedical applications. Because biosensors and biochips have an important place in the early diagnosis of diseases and the promotion of quality of life. New generation biosensors, developed using nanotechnology or chip technology, provide easier monitoring and evaluation of results. Many inventions have arisen as people try to understand atoms, rearrange atoms, and reduce many structures to atomic (micro, nano, etc.) dimensions. One of them is undoubtedly MEMS technology. In this study, studies on biosensor and biochip applications are examined. The areas of use of the new technology have been researched. Biosensor and biochip applications have been examined.

___

  • 1. Malhotra, S., Verma, A., Tyagi, N., Kumar, V., Biosensors: principle, types and applications. Int. J. Adv. Res. Innov. Ideas Educ. 2017. 3 (2):3639-3644.
  • 2. Erdem, A., Ozsoz, M., Electrochemical DNA biosensors based on DNA drug interactions. Electroanalysis, 2002. 14,965-974.
  • 3. Verma, N., Bhardwaj, A., Biosensor technology for pesticides - a review. Appl. Biochem. Biotechnol. 2015. 175, 3093–3119.
  • 4. Sang, S., Wang, Y., Feng, Q., Wei, Y., Ji, J., Zhang, W., The development of new unlabeled techniques for biosensors: a review. Critical. Rev. Biotechnol. 2015. 15, 1-17.
  • 5. Rasooly, A., Biosensor Technologies, 2005. 37(1):1-3.
  • 6. Pişkin, E., Sağlık için biyoteknoloji, Biotek, 2002. 6,1.
  • 7. Telefoncu A., Biyosensörlere genel bakış, Biyosensörler, Biyokimya Lisans Üstü Yaz okulu, Kuşadası, 1999, 1-9.
  • 8. Pan, Y., Sonn, G.A., Sin, M.L., Mach, K.E., Shih, M.C., Gau, V., Wong, P.K., Liao, J.C., Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens Bioelectron, 2010. 26, 649-54.
  • 9. Mulchandani, A., Enzim and microbial biosensors tecniques and protocols, Methods in Biotechnology, Ed: Mulchandani, A., Rogers, K.R., Humana press Inc, Totowa, 1998, 3-11.
  • 10. Wangner, G., Guibault, G.G., Food Biosensor Analysis. New York, NY: Marcel Dekker. 1994.
  • 11. Akyılmaz, E., Baysal, S.H., Dinçkay, E., Investigation of metal activation of a partially purified polyphenol oxidase enzyme electrode. Int J Environ Anal Chem, 2007. 87,755-61.
  • 12. Touhami A., Biosensors and nanobiosensors: design and applications. Nanomed. 2014. 15,374-403.
  • 13. Noh, J., Park, S., Boo, H., Kim, H.C., Chung, T.D., Nanoporous platinum solid-state reference electrode with layer-by-layer polyelectrolyte junction for pH sensing chip. Lab Chip, 2011. 11,664-71.
  • 14. Arlett, J.L., Myers, E.B., Roukes, M.L., Comparative advantages of mechanical biosensors. Nat Nanotechnol, 2011. 6,203-15.
  • 15. Zhang, S., Wright, G., Yang, Y., Materials and techniques for electrochemical biosensor design and construction. Biosens Bioelectron, 200. 15,273-82.
  • 16. Rai, R., Alwani, S., Badea, I., Polymeric nanoparticles in gene therapy: new avenues of design and optimization for delivery applications. Polym. 2019. 11 (4): 745.
  • 17. Ma, F., Li, C., Zhang, C., Development of quantum dot-based biosensors: principles and applications. Mater, J., Chem, B ., 2018. 6(39): 6173-6190.
  • 18. Deshpande, S.S., Rocco, R.M., Biosensors and their potential use in food quality control. Food Technology, 1994. 146-150.
  • 19. Prodromidis, M.I., Karayannis, M., Enzyme based amperometric biosensors for food analysis. Electroanalysis Vol, 2002. 14(4):241-261.
  • 20. Convery N., Gadegaard N., 30-year microfluidics. Micro Nano Eng. 2019. 2, 76-91.
  • 21. Razzacki S.,Z., Thwar P.,K., Yang M., Ugaz V.,M., Burns M.,A., Integrated microsystems for controlled drug delivery. Adv. Drug. Deliv. Rev, 2004. 56,185-198.
  • 22. Li ,X., Tian, J., ve Shen, W., Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics. Applied Materials and Interfaces, 2010. 2(1): 1-6.
  • 23. Nikhil, B., Pawan, J., Nello, F., and Pedro, E., Introduction to biosensors.Essays in Biochemistry, 2016. 60(1):1-8.
  • 24. Demirel, G., Si (100) yüzeyler üzerine kendiliğinden düzenlenen biyolojik aktiviteye sahip tabakaların tasarımı. Doktora Tezi, Gazi Üniv. Fen Bilimleri Enstitüsü, Ankara, 2006. 4, 75.
  • 25. Li, J., Zhang, Z., Rosenzweig, J., Wang, Y.Y., Chan, D.W., Proteomix and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem, 2002. 48, 1296-1304.
  • 26. Falsey, J.R., Renil, M., Park, S., Li, S., Lam, K.S., Peptide and small molecule microarrray for high throughput cell adhesion and functional assays. Bioconjug Chem, 2001. 12, 346-353.
  • 27. Borsting, C., Sanches, J.J., Morling, N., Multiplex PCR, amplicon size and hybridization efficiency on the Nano Chip electronic microarray. Int J Legal Med, 2004. 118, 75-82.
  • 28. Costa, D.J.E., Martínez, A.M., Ribeiro, W.F., Bichinho, K.M., Nezio, M.S.D., Pistonesi, M.F., Araujo, M.C.U., “Determination of tryptamine in foods using square wave adsorptive stripping voltammetry,” Talanta, c. 2016. 154, 134–140.
  • 29. Liu, S., Ye, J., He, P., Fang, Y., Voltammetric determination of sequence-spesific DNA by electroactive intercalator on graphite electrode, Anal. Chim. Acta, 1996. 335, 239-243.
  • 30. Olivera-Brett, A.M., Chiorcea Paquım A.M., Dıculescu, V.C., Piedade, J.A.P., Electrochemiatry of nanoscale DNA surface films on carbon Medical Engineering & Physics, 2006. 28, 963-970.
  • 31. Tso Liu, W.T., Liang, Z., Environmental microbiologyon-a-chip and its future impacts. Trends Biotechnol, 2005. 23, 1-6.
  • 32. Chapman, K., The protein chip biomarker system from ciphergen biosystems: a novel proteomics platform for rapid biomarker discovery and validation. Biochem Soc Trans, 2002. 30, 82-87.
  • 33. Jia, X., Dong, S., Wang, E., Biosensors and Bioelectronics, 2016. 76, 80-90.
  • 34. Kodadek, T., Development of proteindetecting microarrrays and related devices. Trends Biochem Sci, 2002. 27, 295-300.
  • 35. Lueders, C., Jastram, B., Hetzer R., et al. Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg, 2014. 46, 593-601.
  • 36. Bashir, R., BioMEMS: State-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 2004. 56:1565-1586.
  • 37. Dittrich, P.S., Manz, A., Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006. 5,210.
  • 38. Grayson, A.C.R., Shawgo, R.S., Johnson, A.M., Flynn, N.T., Li, Y., Cima, M.J., Langer, R., A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE. 2004. 92:6–21.
  • 39. Bhatia, S.N., Ingber, D.E., Microfluidic organs-on-chips. Nat. Biotechnol. 2014. 32,760–772.
  • 40. Tao, S.L., Desai, T.A., Microfabricated drug delivery systems; from particles to pores Adv. Drug Deliv. Rev, 2003. 55, 315-328.
  • 41. Alkaya, A., Şereflişan, H., Duysak, Ö., Biyomateryal Kaynakları ve Kullanım Alanları, First International Conference on Envronment, Technology and Management ICETEM, 2019. 27-29.
  • 42. Kurek Nicholas, S., Cahndra Sathees, B., “Genetik Bakış Açısıyla Nörolojik Hastalıklarda Nanoteknolojiye Dayalı Tedaviler”, Arşiv Kaynak Tarama Dergisi, 2013. 22(1):12‐32.
  • 43. Ding, C.Z., Li, Z.B., A review of drug release mechanisms from nanocarrier systems. Mater Sci Eng. 2017. 76,1440–53.
  • 44. Parveen, S., Misra, R., Saho, S., Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012. 8,147-166.
  • 45. Ning, C., “Biomaterials for bone tissue engineering,” in Biomechanics and Biomaterials in Orthopedics, Second Edition, 2016.