Data Analytics of Building Automation Systems: A Case Study

In today’s technology, when costs of time, energy and human resources are considered, efficient use of resources provides significant advantages over many aspects. In light of this, role of building automation systems, which are a part of smart cities, become even more important. At the very core of building automation systems there lies the efficient use of resources and systems for providing comfortable living situations. With the advancement in network technology, systems can be programmed smartly and any malfunctions on the systems can be detected and fixed remotely. In addition to that, all data gathered during this process can be analyzed to create machine- learning solutions for a system to control and program itself. In this document we are presenting a Web application offering features of data analysis and most importantly predictive modeling in the context of building data energy management. As of today, the implementation is made from a CUNY building at John Jay College and contains thousands of data collected from hundreds of sensors over a period of two years, and regularly updated. That is a particular context but the tool can easily be adapted to any type of data environment based on time series. The system articulates around three concepts: visualization, and predicting statistics and forecasting. Visualization is made possible with powerful widgets, and statistics and forecasting based on Python modules. The web client server architecture has several purposes, including, of course, the ones related to any web application, but what is most important it allows transparency between users; every user being able to see each other works. Overall, the originality of this application comes from its high degree of customization: indeed it contains an on-the-fly python interpreter ready to be used with the data, itself encapsulated inside a python object. Therefore, all kind of formulation is allowed to be immediately displayed. The forecasting part is versatile as well, and it sits on python machine learning features, but adapted to manipulate time series.

___

[1] Çimen, L., (2005) Bina Otomasyon Sistemleri, Türk Tesisat Mühendisleri Derneği Dergisi.

[2] Karaca, H., (2002) Otomatik Kontrol Ve Otomasyon Sistemlerinin Vazgeçilmez Elemanları: Sensörler, Türk Tesisat Mühendisleri Derneği Dergisi.

[3] Ercan, M. S. (2009), Bina Otomasyon Sistemleri İle Devreye Alma İşlemleri , Ix.Ulusal Tesisat Mühendisliği Kongresi, 1121-1127.

[4] Yılmaz, Z. (2005). Akıllı Binalar Ve YenilenebilirEnerji. Teskon Konferansı, İzmir. Teknokulis. 01.03.2016.Türkiye Akıllı Şehirler Değerlendirme Raporu Yayınlandı.

[5] Erişim :31 Mayıs 2016

[6] Kaşıkçı,S.(2015). Sensörler. Slideplayer. < http://slideplayer.biz.tr/slide/2792904/>. Erişim:31 Mayıs 2017

[7] Necoinside. (2015). Ds18b20 Dijital Sıcaklık Sensörü. . Erişim:31 Mayıs 2017

[8] Günacar, G. ( 2011). Türkiye Ve Dünyada Akıllı Binalar. Erişim 31 Mayıs 2016

[9] Utkutuğ, G. (2011), Sürdürülebilir Bir Geleceğe Doğru Mimarlık Ve Yüksek Performanslı Yeşil Bina Örnekleri.

[10] Kırmızıoğlu, E. (2014). Ülkemizin 2023 Stratejik Vizyonu Doğrultusunda Akıllı Şebekeye Geçilmesi İçin Öneriler. 2. Uluslararası İstanbul Akıllı Şebekeler Kongre Ve Fuarı . 143-147.

[11] Civan, U. (2015) Akıllı Binaların Çevresel Sürdürülebilirlik Açısından Değerlendirilmesi. Diss. Fen Bilimleri Enstitüsü.

[12] Gazioglu, A.,Akşit,Ş.F. ,Manioğlu,G. (2013). Enerji Etkin Bina Tasarımında Isıtma Enerjisi Tüketimini Azaltmaya Yönelik Bir İyileştirme Çalışması

[13] Manioğlu, G.(2007). Geleneksel Mimaride İklimle Uyumlu Binalar: Mardin'de Bir Öğrenci Atölyesi, Vııı. Ulusal Tesisat Mühendisliği Kongresi Ve Sergisi, 79-92

[14] Yılmaz, Z.(2006).Akıllı Binalar Ve Yenilenebilir Enerji, Tesisat Mühendisliği Dergisi,91,7-15.

[15] Canbay, C.S. , Akkurt, G.G. , Hepbaşlı,A. (2003), Bina Yönetim Sistemleri Ve Hvac Sistemlerinde Enerji Tasarrufuna Yönelik Kontrol İlkeleri, Vı. Ulusal Tesisat Mühendisliği Kongresi Ve Sergisi, 653- 671

[16] Karaca, H. , Otomatik Kontrol Ve Otomasyon Sistemlerinin Vazgeçilmez Elemanları: Sensörler, Türk Tesisat Mühendisleri Derneği Dergisi.

[17] Cai, J. and Braun, J. (2012) “Efficient And Robust Training Methodology For Inverse Building Modeling And Its Application To A Multi-Zone Case Study” International High Performance Buildings Conference, Paper 98. http://docs.lib.purdue.edu/ihpbc/98

[18] Inno, Y. and Masakiko, M. (2013) “Physical And Jit Model Based Hybrid Modeling Approach For Thermal Load Prediction” Electrical Engineering In Japan V.85 No.2

[19] Zhou, Q. And Shangwei, W. (2008) “A Greybox Model Of Next-Day Building Thermal Load Prediction For Energy Efficiency Control” International Journal Of Energy Research V.32 1418-1431

[20] Oldewurtel, F. And Andreas, U. (2010) Reducing Peak Electricity Demand In Building Climate Control Using Real-Time Pricing And Model Predictive Control. Proceedings Of The Ieee

[21] Oldewurtel, F. And Alessandra, P. (2012) “Use Of Model Predictive Control And Weather Forecasts For Energy Efficienct Building Climate Control” Energy And Buildings V.45 15-2

[22] Li, P., O’neill, Z. and Braun, J. (2013) “Development Of Control Oriented Models For Model Predictive Control In Buildings” Ashrae.

[23] Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16(6), 3586-3592.