Artificial Intelligence Hybrid System for Enhancing Retinal Diseases Classification Using Automated Deep Features Extracted from OCT Images

Artificial Intelligence Hybrid System for Enhancing Retinal Diseases Classification Using Automated Deep Features Extracted from OCT Images

Abstract: After the advent of eye 2D imaging technology, Optical Coherence Tomography (OCT) has become one of the most effective and commonly used imaging techniques for non-invasive retinal eye disease evaluation. Blindness is primarily diagnosed using OCT with one of the following two eye diseases categories: diabetic macular edema (DME) or age-related macular degeneration (AMD). The classification of eye retina diseases using OCT images has recently become a challenge with the development of machine learning and profound learning techniques. In this paper, a hybrid artificial intelligence system for multiclass classification of eye retina diseases has been proposed, using automated deep features extracted, based on Advanced OCT Network (AOCTNet) architecture from OCT images especially spectral-domain (SD-OCT) images. The proposed methodology mainly can be used to classify retinal diseases into normal and four abnormal classes (AMD, choroidal neovascularization (CNV), DME, and Drusen). The proposed system was constructed using eight types of machine learning algorithms (Support Vector Machine with Linear kernel (LSVM), Support Vector Machine with Radial Basis Function kernel (RBF SVM), Artificial Neural Network (ANN), K Nearest Neighbor (KNN), Random Forest (RF), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), and Naïve Bayes (NB)). The classifiers achieved high performance. For example, the KNN and the RF classifiers achieved an accuracy of 99.44 and 99.12, respectively. This methodology is potentially a powerful computer-aided diagnostic (CAD) tool for the use of SD-OCT imaging for retinal diseases.

___

  • [1] Alqudah, A. M. (2020). AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectraldomain optical coherence tomography images. Medical & biological engineering & computing, 58(1), 41-53. https://doi.org/10.1007/s11 517-019-02066-y
  • [2] Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., ... & Dong, J. (2018). Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), 1122- 1131. https://doi.org/10.1016/j.cell.2018.02.010
  • [3] Farsiu, S., Chiu, S. J., O'Connell, R. V., Folgar, F. A., Yuan, E., Izatt, J. A., Toth, C.A. (2014). Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography. Ophthalmology, 121(1), 162-172. https://d oi.org/10.1016/j.ophtha.2013.07.013
  • [4] Lemaître, G., Rastgoo, M., Massich, J., Cheung, C. Y., Wong, T. Y., Lamoureux, E., ... & Sidibé, D. (2016). Classification of SD-OCT volumes using local binary patterns: experimental validation for DME detection. Journal of ophthalmology, 2016. https://doi.org/10.1155/2016/3298606
  • [5] Reis, A. S., O'Leary, N., Yang, H., Sharpe, G. P., Nicolela, M. T., Burgoyne, C. F., & Chauhan, B. C. (2012). Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Investigative ophthalmology & visual science, 53(4), 1852-1860. https://doi.org/10.1167/iovs.11-9309
  • [6] Kanagasingam, Y., Bhuiyan, A., Abramoff, M. D., Smith, R. T., Goldschmidt, L., & Wong, T. Y. (2014). Progress on retinal image analysis for age related macular degeneration. Progress in retinal and eye research, 38, 20-42. https://doi.org/10.1016/j.preteyeres .2013.10.002
  • [7] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature medicine, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z
  • [8] Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B. S., Waldstein, S. M., & Bogunović, H. (2018). Artificial intelligence in retina. Progress in retinal and eye research, 67, 1-29. https://doi.org/10.1016/j.preteyeres. 2018.07.004
  • [9] Ting, D. S., Wu, W. C., & Toth, C. (2019). Deep learning for retinopathy of prematurity screening. http://dx.doi.org/10.1136/bjophthalmol-2018-313290
  • [10] Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., ... & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 167-175. http://dx.doi.org/10.1 136 /bjophthalmol-2018-313173
  • [11] Pierro, L., Zampedri, E., Milani, P., Gagliardi, M., Isola, V., & Pece, A. (2012). Spectral domain OCT versus time domain OCT in the evaluation of macular features related to wet age-related macular degeneration. Clinical ophthalmology (Auckland, NZ), 6, 219. https://doi.org/10.2147/OPTH.S27656
  • [12] Sajda, P. (2006). Machine learning for detection and diagnosis of disease. Annu. Rev. Biomed. Eng., 8, 537- 565.https://doi.org/10.1146/annurev.bioeng.8.061505.095802
  • [13] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10. 1038/nature14539
  • [14] Alsaih, K., Lemaitre, G., Rastgoo, M., Massich, J., Sidibé, D., & Meriaudeau, F. (2017). Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomedical engineering online, 16(1), 68. https://doi.org/10.11 86/s12938-017- 0352-9.
  • [15] Awais, M., Müller, H., Tang, T. B., & Meriaudeau, F. (2017, September). Classification of sd-oct images using a deep learning approach. In 2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 489-492). IEEE. https://doi.org/10.1109/ICSIPA.2017.8120661
  • [16] Lee, C. S., Baughman, D. M., & Lee, A. Y. (2017). Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmology Retina, 1(4), 322-327. https://doi.org/10.1016/j.oret.2016.12.009
  • [17] Karri, S. P. K., Chakraborty, D., & Chatterjee, J. (2017). Transfer learning based classification of optical coherence tomography images with diabetic macular edema and dry age-related macular degeneration. Biomedical optics express, 8(2), 579-592. https://doi.org/10.1364/boe.8.000579
  • [18] Amil, P., González, L., Arrondo, E., Salinas, C., Guell, J. L., Masoller, C., & Parlitz, U. (2019). Unsupervised feature extraction of anterior chamber OCT images for ordering and classification. Scientific reports, 9(1), 1-9. https://doi.org/10.1038/s41598-018-38136-8
  • [19] Ji, Q., He, W., Huang, J., & Sun, Y. (2018). Efficient deep learningbased automated pathology identification in retinal optical coherence tomography images. Algorithms, 11(6), 88. https://doi.org/10.3390 /a11060088
  • [20] Perdomo, O., Otálora, S., González, F. A., Meriaudeau, F., & Müller, H. (2018, April). Oct-net: A convolutional network for automatic classification of normal and diabetic macular edema using sd-oct volumes. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 1423-1426). IEEE. https://doi.org/10.1109/ISBI.2018.8363839
  • [21] Nugroho, K. A. (2018, October). A comparison of handcrafted and deep neural network feature extraction for classifying optical coherence tomography (OCT) images. In 2018 2nd International Conference on Informatics and Computational Sciences (ICICoS) (pp. 1-6). IEEE. https://doi.org/10.1109/ICICOS.2018.8621 687
  • [22] Hwang, D. K., Hsu, C. C., Chang, K. J., Chao, D., Sun, C. H., Jheng, Y. C., ... & Peng, C. H. (2019). Artificial intelligence-based decisionmaking for age-related macular degeneration. Theranostics, 9(1), 232. https://doi.org/10.7150/thno.28447
  • [23] Gnanadurai, D., & Sadasivam, V. (2005). Image de-noising using double density wavelet transform based adaptive thresholding technique. International Journal of Wavelets, Multiresolution and Information Processing, 3(01), 141-152. https://doi.org/10.1142/S02 19691305000701
  • [24] A.M. Alqudah, H. Alquraan, I. Abu Qasmieh, A. Alqudah and W. Al- Sharu (2019). Brain Tumor Classification Using Deep Learning Technique - A Comparison between Cropped, Uncropped, and Segmented Lesion Images with Different Sizes, International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 6, pp. 3684-3691, 2019. https://doi.org/10.30534/ijatcse/20 19/155862019.
  • [25] Trosten, D. J., & Sharma, P. (2019, June). Unsupervised feature extraction–a cnn-based approach. In Scandinavian Conference on Image Analysis (pp. 197-208). Springer, Cham. https://doi.org/10.1007/978-3-030-20205-7_17
  • [26] Garcia-Gasulla, D., Parés, F., Vilalta, A., Moreno, J., Ayguadé, E., Labarta, J., ... & Suzumura, T. (2018). On the behavior of convolutional nets for feature extraction. Journal of Artificial Intelligence Research, 61, 563-592. https://doi.org/10.1613/jair.5756.
  • [27] Alqudah, A. M., Algharib, H. M., Algharib, A. M., & Algharib, H. M. (2019). Computer aided diagnosis system for automatic two stages classification of breast mass in digital mammogram images. Biomedical Engineering: Applications, Basis and Communications, 31(01), 1950007. https://doi.org/10.40 15/S1016237219500078
  • [28] Alqudah, A., & Alqudah, A. M. (2019). Sliding window based support vector machine system for classification of breast cancer using histopathological microscopic images. IETE Journal of Research, 1-9. https://doi.org/10.1080/03772063.2019.1583610
  • [29] Alqudah, A. M. (2019). Ovarian Cancer Classification Using Serum Proteomic Profiling and Wavelet Features A Comparison of Machine Learning and Features Selection Algorithms. Journal of Clinical Engineering, 44(4), 165-173. https://doi.org/10.1097/JC E.0000000000000359
  • [30] Alqudah, A. M. (2019). Towards classifying non-segmented heart sound records using instantaneous frequency based features. Journal of medical engineering & technology, 43(7), 418-430. https://doi.org/10.1080/ 03091902.2019.1688408
  • [31] Alkan, A., & Günay, M. (2012). Identification of EMG signals using discriminant analysis and SVM classifier. Expert systems with Applications, 39(1), 44-47. https://doi.org/10.1016/j.eswa.2011.06.043
  • [32] Dey Sarkar, S., Goswami, S., Agarwal, A., & Aktar, J. (2014). A novel feature selection technique for text classification using Naive Bayes. International scholarly research notices, 2014. https://doi.org/10.1155/2014/ 717092
  • [33] Hussain, M. A., Bhuiyan, A., Luu, C. D., Smith, R. T., Guymer, R. H., Ishikawa, H., ... & Ramamohanarao, K. (2018). Classification of healthy and diseased retina using SD-OCT imaging and Random Forest algorithm. PloS one, 13(6). https://doi.org/10.1371/jou rnal.pone.0198281
  • [34] Rong, Y., Xiang, D., Zhu, W., Yu, K., Shi, F., Fan, Z., & Chen, X. (2018). Surrogate-assisted retinal OCT image classification based on convolutional neural networks. IEEE journal of biomedical and health informatics, 23(1), 253-263. https://doi.org/10.1109/JB HI.2018.2795545
  • [35] Fang, L., Jin, Y., Huang, L., Guo, S., Zhao, G., & Chen, X. (2019). Iterative fusion convolutional neural networks for classification of optical coherence tomography images. Journal of Visual Communication and Image Representation, 59, 327-333. https://doi.org/10.1016/j.j vcir.2019.01.022.
  • [36] Luo Y, Pan J, Fan S, Du Z, Zhang G. Retinal image classification by self-supervised fuzzy clustering network. IEEE Access. 2020 May 12;8:92352-62.
  • [37] He, X., Deng, Y., Fang, L. and Peng, Q., 2021. Multi-Modal Retinal Image Classification With Modality-Specific Attention Network. IEEE Transactions on Medical Imaging, 40(6), pp.1591-1602.
  • [38] Miere, A., Le Meur, T., Bitton, K., Pallone, C., Semoun, O., Capuano, V., Colantuono, D., Taibouni, K., Chenoune, Y., Astroz, P. and Berlemont, S., 2020. Deep learning-based classification of inherited retinal diseases using fundus autofluorescence. Journal of Clinical Medicine, 9(10), p.3303.