Ultrasonik Destekli Asit Hidrolizi ile Nanokristalin Selüloz Üretimi

Selüloz nanokristalin (SN) atkestanesi tohumu kabuğundan asit hidrolizi ile ekstrakte edilmiştir. Ham kabuklar küçük parçalara bölünmüş, alkali işleme tabi tutulmuş, ağartılmış ve sülfirik asit ile muamele edilmiştir. Hidroliz reaksisyonunun süresinin elde edilen SN’lerin yapısına, kristalinitesine, termal, morfolojik ve topolojik özelliklerine etkisi araştırılmıştır. Fouriere kızıl ötesi spektrumları incelendiğinde ligninin ve hemiselülozun alkali ve ağartma işlemleri sırasında üretilen ürünlerin yapısından tamamen uzaklaştırıldığı görülmüştür. Üretilen SN’lerin kristalinite dereceleri artan reaksiyon sürei ile birlikte önce artmış ve 20 dakikadan sonra azalmaya başlamıştır. Atkestanesi kabuğundan SN üretiminde optimal isolasyon süresi 20 dakika (45 °C’de ve % 50’lik sülfirik asit çözeltisi içerisinde) olarak belirlenmiştir. Selüloz ve SN’nin morfolojik özellikler Taramalı Elektron Mikroskobu ilen incelenmiş ve selüloza göre SN’nin iğne benzeri değişmiş bir yapıya sahip olduğu gözlenmiştir. 585 nm’lik Ra değeri ile selülozun yüzey pürüzlülüğünün SN’ye göre (111 nm) dah yüzek olduğu Atomik Kuvvet mikrokobu ile karakterize edilmiştir. SN’lerin termal stabilitesi artan isolasyon süresi ile selüloza göre azalmıştır.

Production of Nanocrystalline Cellulose by Ultrasonically Assisted Acid Hydrolysis

Cellulose nanocrystals (SN) were isolated from the shell of horse chestnut seed using sulfuric acid hydrolysis. The raw shells were broken into small pieces, treated alkali, bleached, and subjected to the sulphuric acid process. The effect of hydrolysis time on the structure, crystallinity, thermal properties, morphology, and topology of cellulose and SNs were investigated. The lignin and hemicellulose contents were almost entirely removed from the produced cellulose through the alkali and bleaching treatments demonstrated to Fourier transform infrared spectroscopy. The crystallinity of SNs was increased firstly with increasing reaction time and then along with the reaction times longer than 20 minutes decreases. The optimal isolation time for SN production was found to be 20 min at 45 °C in a 50 % sulfuric acid solution. The morphology of the cellulose and SN were investigated by Field Emission Scanning Electron Microscopy and revealed a changed needle-like surface structure of SN relative to cellulose. The surface roughness of cellulose with a Ra value of 585 nm is higher than the cellulose nanocrystalline with a Ra value of 111 nm, which were characterized using Atomic Force Microscopy. The thermal stability of SNs was decreased during increased extraction times compared with cellulose.

___

  • [1] W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, Y. Hai, Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments, Carbohydrate Polymers. 83 (2011) 1804–1811. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.10.040.
  • [2] S. Cui, S. Zhang, S. Ge, L. Xiong, Q. Sun, Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis, Industrial Crops and Products. 83 (2016) 346–352. https://doi.org/https://doi.org/10.1016/j.indcrop.2016.01.019.
  • [3] A.H. Tayeb, E. Amini, S. Ghasemi, M. Tajvidi, Cellulose Nanomaterials—Binding Properties and Applications: A Review, Molecules. 23 (2018). https://doi.org/10.3390/molecules23102684.
  • [4] B. ÇİÇEK ÖZKAN, Çapraz Bağlı Kitosan/Selüloz/Grafen Kompozitinin Şişme Davranışlarının İncelenmesi., Investigation of Swelling Behavior of Cross-Linked Chitosan/Cellulose/Graphene Composite. 33 (2021) 329–337. http://10.0.137.162/fumbd.858462.
  • [5] J.D.P. de Amorim, K.C. de Souza, C.R. Duarte, I. da Silva Duarte, F. de Assis Sales Ribeiro, G.S. Silva, P.M.A. de Farias, A. Stingl, A.F.S. Costa, G.M. Vinhas, L.A. Sarubbo, Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review, Environmental Chemistry Letters. 18 (2020) 851–869. https://doi.org/10.1007/s10311-020-00989-9.
  • [6] B. Thomas, M.C. Raj, B.K. Athira, H.M. Rubiyah, J. Joy, A. Moores, G.L. Drisko, C. Sanchez, Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications, Chemical Reviews. 118 (2018) 11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627.
  • [7] E. Fortunati, I. Armentano, Q. Zhou, A. Iannoni, E. Saino, L. Visai, L.A. Berglund, J.M. Kenny, Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles, Carbohydrate Polymers. 87 (2012) 1596–1605. https://doi.org/https://doi.org/10.1016/j.carbpol.2011.09.066.
  • [8] H.L. Teo, R.A. Wahab, Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review, International Journal of Biological Macromolecules. 161 (2020) 1414–1430. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.08.076.
  • [9] S.A. Ogundare, V. Moodley, W.E. van Zyl, Nanocrystalline cellulose isolated from discarded cigarette filters, Carbohydrate Polymers. 175 (2017) 273–281. https://doi.org/10.1016/j.carbpol.2017.08.008.
  • [10] F.I. Ditzel, E. Prestes, B.M. Carvalho, I.M. Demiate, L.A. Pinheiro, Nanocrystalline cellulose extracted from pine wood and corncob, Carbohydrate Polymers. 157 (2017) 1577–1585. https://doi.org/10.1016/j.carbpol.2016.11.036.
  • [11] H. Zhang, Y. Chen, S. Wang, L. Ma, Y. Yu, H. Dai, Y. Zhang, Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods, Carbohydrate Polymers. 238 (2020) 116180. https://doi.org/10.1016/j.carbpol.2020.116180.
  • [12] D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angewandte Chemie - International Edition. 44 (2005) 3358–3393. https://doi.org/10.1002/anie.200460587.
  • [13] A.H. Bhat, I. Khan, M.A. Usmani, R. Umapathi, S.M.Z. Al-Kindy, Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose, International Journal of Biological Macromolecules. 129 (2019) 750–777. https://doi.org/10.1016/j.ijbiomac.2018.12.190.
  • [14] H. Kargarzadeh, I. Ahmad, I. Abdullah, A. Dufresne, S.Y. Zainudin, R.M. Sheltami, Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers, Cellulose. 19 (2012) 855–866. https://doi.org/10.1007/s10570-012-9684-6.
  • [15] F. Jiang, Y. Lo Hsieh, Chemically and mechanically isolated nanocellulose and their self-assembled structures, Carbohydrate Polymers. 95 (2013) 32–40. https://doi.org/10.1016/j.carbpol.2013.02.022.
  • [16] W.P. Flauzino Neto, H.A. Silvério, N.O. Dantas, D. Pasquini, Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls, Industrial Crops and Products. 42 (2013) 480–488. https://doi.org/10.1016/j.indcrop.2012.06.041.
  • [17] C.A.D.C. Mendes, N.M.S. Ferreira, C.R.G. Furtado, A.M.F. De Sousa, Isolation and characterization of nanocrystalline cellulose from corn husk, Materials Letters. 148 (2015) 26–29. https://doi.org/10.1016/j.matlet.2015.02.047.
  • [18] H.A. Silvério, W.P. Flauzino Neto, N.O. Dantas, D. Pasquini, Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites, Industrial Crops and Products. 44 (2013) 427–436. https://doi.org/10.1016/j.indcrop.2012.10.014.
  • [19] K. Rahbar Shamskar, H. Heidari, A. Rashidi, Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk, Industrial Crops and Products. 93 (2016) 203–211. https://doi.org/10.1016/j.indcrop.2016.01.044.
  • [20] L. Jasmani, S. Adnan, Preparation and characterization of nanocrystalline cellulose from Acacia mangium and its reinforcement potential, Carbohydrate Polymers. 161 (2017) 166–171. https://doi.org/10.1016/j.carbpol.2016.12.061.
  • [21] M.J. Dunlop, B. Acharya, R. Bissessur, Isolation of nanocrystalline cellulose from tunicates, Journal of Environmental Chemical Engineering. 6 (2018) 4408–4412. https://doi.org/10.1016/j.jece.2018.06.056.
  • [22] R.A. Ilyas, S.M. Sapuan, M.R. Ishak, Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata), Carbohydrate Polymers. 181 (2018) 1038–1051. https://doi.org/10.1016/j.carbpol.2017.11.045.
  • [23] M.L. Foo, C.R. Tan, P.D. Lim, C.W. Ooi, K.W. Tan, I.M.L. Chew, Surface-modified nanocrystalline cellulose from oil palm empty fruit bunch for effective binding of curcumin, International Journal of Biological Macromolecules. 138 (2019) 1064–1071. https://doi.org/10.1016/j.ijbiomac.2019.07.035.
  • [24] D. Tuerxun, T. Pulingam, N.I. Nordin, Y.W. Chen, J. Bin Kamaldin, N.B.M. Julkapli, H.V. Lee, B.F. Leo, M.R. Bin Johan, Synthesis, characterization and cytotoxicity studies of nanocrystalline cellulose from the production waste of rubber-wood and kenaf-bast fibers, European Polymer Journal. 116 (2019) 352–360. https://doi.org/10.1016/j.eurpolymj.2019.04.021.
  • [25] P. Gullón, B. Gullón, A. Muñiz-Mouro, T.A. Lú-Chau, G. Eibes, Valorization of horse chestnut burs to produce simultaneously valuable compounds under a green integrated biorefinery approach, Science of the Total Environment. 730 (2020). https://doi.org/10.1016/j.scitotenv.2020.139143.
  • [26] R.M. dos Santos, W.P. Flauzino Neto, H.A. Silvério, D.F. Martins, N.O. Dantas, D. Pasquini, Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste, Industrial Crops and Products. 50 (2013) 707–714. https://doi.org/10.1016/j.indcrop.2013.08.049.
  • [27] J. Wang, Y.Z. Wan, H.L. Luo, C. Gao, Y. Huang, Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique, Materials Science and Engineering C. 32 (2012) 536–541. https://doi.org/10.1016/j.msec.2011.12.006.
  • [28] F.A. Ngwabebhoh, A. Erdem, U. Yildiz, A design optimization study on synthesized nanocrystalline cellulose, evaluation and surface modification as a potential biomaterial for prospective biomedical applications, International Journal of Biological Macromolecules. 114 (2018) 536–546. https://doi.org/10.1016/j.ijbiomac.2018.03.155.