Peumus Boldus Koch Özütü Kullanılarak Nikel Nanopartiküllerin Yeşil Sentezi ve Antibakteriyel Aktivitesi

Günümüzde nano sistemler, özellikle çok işlevli inorganik nanopartiküller, biyomedikal alanda büyük ilgi görmektedir. Nanoteknolojide inorganik nanopartiküller olarak bilinen ve önemli bir yeri olan metalik nanopartiküller olarak bilinen nikel nanopartiküller antibakteriyel özellikler göstermektedir. Nikel nanopartiküllerinin insan teması gerektiren alanlarda kullanım bulması, biyolojik sistemlerle nanopartikül sentezine yol açmaktadır. Böylelikle daha çevreci yapılar ortaya çıkar. Bu çalışmada nikel nanopartiküller ilk kez Peumus boldus ekstresi kullanılarak biyosentez yoluyla sentezlendi. Yapısal, kimyasal ve morfolojik özellikler UV-vis, FTIR, XRD ve SEM yöntemleriyle incelenmiştir. Peumus boldus'tan elde edilen ekstrakt, nikel nanopartiküllerin sentezinde indirgeyici ajan olarak kullanıldı. Ayrıca elde edilen nikel nanopartiküllerin E. coli ve S. aureus'a karşı antibakteriyel aktiviteleri araştırıldı.

Green Synthesis of Nickel Nanoparticles Using Peumus Boldus Koch. Extract and Antibacterial Activity

Today, nano-systems, especially multi-functional inorganic nanoparticles, attract a lot of attention in the biomedical field. Nickel nanoparticles, known as inorganic nanoparticles in nanotechnology and known as metallic nanoparticles with an important place, show antibacterial properties. The fact that nickel nanoparticles find use in areas requiring human contact leads to nanoparticle synthesis with biological systems. Thus, more environmentally friendly structures emerge. In this study, nickel nanoparticles were synthesized for the first time by biosynthesis using Peumus boldus extract. Structural, chemical and morphological properties were examined by UV-vis, FTIR, XRD, and SEM methods. Extract obtained from Peumus boldus was used as reducing agent in the synthesis of nickel nanoparticles. In addition, the antibacterial activities of the obtained nickel nanoparticles were investigated against E. coli and S. aureus.

___

  • 1. Ahghari, M. R., Soltaninejad, V., & Maleki, A. (2020). Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Scientific Reports, 10(1).
  • 2. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B-Biointerfaces, 28(4), 313-318.
  • 3. Ahmad, M. A., Salmiati, S., Marpongahtun, M., Salim, M. R., Lobo, J. A., & Syafiuddin, A. (2020). Green Synthesis of Silver Nanoparticles Using Muntingia calabura Leaf Extract and Evaluation of Antibacterial Activities. Biointerface Research in Applied Chemistry, 10(5), 6297-6305.
  • 4. Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces B-Biointerfaces, 103, 283-287.
  • 5. Bali, R., & Harris, A. T. (2010). Biogenic Synthesis of Au Nanoparticles Using Vascular Plants. Industrial & Engineering Chemistry Research, 49(24), 12762-12772.
  • 6. Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination. Journal of Food Science, 75(9), M557-M563.
  • 7. ChaudharyJay, R. G., Tanna, J., Nilesh, V. G., Rai, A. R., & Juneja, H. S. (2015). Synthesis Of Nickel Nanoparticles: Microscopic Investigation, An Efficient Catalyst And Effective Antibacterial Activity. Advanced Materials Letters, 6(11), 990-998.
  • 8. Huang, J. L., Li, Q. B., Sun, D. H., Lu, Y. H., Su, Y. B., Yang, X., . . . Chen, C. X. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10).
  • 9. Kasthuri, J., Veerapandian, S., & Rajendiran, N. (2009). Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids and Surfaces B-Biointerfaces, 68(1), 55-60.
  • 10. Kaviya, S., Santhanalakshmi, J., & Viswanathan, B. (2019). Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-Sorbitol: Study of Antibacterial Activity (Retraction of Vol 2011, art no 152970, 2011). Journal of Nanotechnology, 2019.
  • 11. Khalil, K. A., Fouad, H., Elsarnagawy, T., & Almajhdi, F. N. (2013). Preparation and Characterization of Electrospun PLGA/silver Composite Nanofibers for Biomedical Applications. International Journal of Electrochemical Science, 8(3), 3483-3493.
  • 12. Klaus-Joerger, T., Joerger, R., Olsson, E., & Granqvist, C. G. (2001). Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 19(1), 15-20.
  • 13. Korbekandi, H., & Iravani, S. (2012). Silver Nanoparticles. Delivery of Nanoparticles, 3-36.
  • 14. Pang, H., Lu, Q. Y., Chen, C. Y., Liu, X. R., & Gao, F. (2011). Facile synthesis of Ni-3(BO3)(2) nanoribbons and their antimicrobial, electrochemical and electrical properties. Journal of Materials Chemistry, 21(36), 13889-13894.
  • 15. Pasupuleti, V. R., Prasad, T. N. V. K. V., Shiekh, R. A., Balam, S. K., Narasimhulu, G., Reddy, C. S., . . . Gan, S. H. (2013). Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. International Journal of Nanomedicine, 8, 3355-3364.