Eklemeli İmalat Yönteminde Oluşan Isıl Değişimler ve Modellenmesi

Eklemeli imalat (AM) yöntemlerinin kullanımı uygulama ve pazar payı açısından sürekli artış göstermektedir. Enerji, cerrahi implantlar, havacılık–uzay ve otomotiv gibi endüstri alanlarında büyümeye hızla devam etmektedir. Eklemeli imalat yönteminde tasarım özgürlüğü oldukça fazla ve imalat süresi geleneksel yöntemlere göre daha hızlıdır. AM işlemlerinin daha hızlı ve daha güvenilir hale getirilmesi için metal AM süreçlerinin modellenmesi süreç ve ürün optimizasyonu için büyük önem arz etmektedir. Bu çalışmada eklemeli imalat yönteminde oluşan ısıl değişimler ve modellenmesi araştırılmaktadır.

Thermal Changes and Modeling in Additive Manufacturing

The use of additive manufacturing (AM) methods is constantly increasing in terms of application and market share. It continues to grow rapidly in industry such as energy, surgical implants, aerospace and automotive. In additive manufacturing method, design freedom is quite high and manufacturing time is faster than traditional methods. In order to make AM processes faster and more reliable, modeling of metal AM processes is of great importance for process and product optimization. In this study, thermal changes occurring in additive manufacturing method and their modeling are investigated.

___

  • Purtonen, T., Kalliosaari, A., Salminen, A., Monitoring and adaptive control of laser processes, Physics Procedia, 56, 1218–1231, 2014.
  • Wang, L., Felicelli, S.D., Craig, J.E., Experimental and numerical study of the LENS rapid fabrication process, Journal of Manufacturing Science and Engineering, 131, 041019-8, 2009.
  • Tang, L., Landers, R.G., Melt pool temperature control for laser metal deposition processes-Part I: Online temperature control, Journal of Manufacturing Science and Engineering, 132, 011010-9, 2010.
  • Peng, L., Taiping, Y., Sheng, L., Dongsheng, L., Qianwu, H., Weihao, X., Xiaoyan, Z., Direct laser fabrication of nickel alloy samples, International Journal of Machine Tools Manufacture, 45, 1288–1294, 2005.
  • Costa, L., Vilar, R., Reti, T., Deus, A.M., Rapid tooling by laser powder deposition: process simulation using finite element analysis, Acta Materialia, 53, 3987–3999, 2005.
  • Nisar, A., Schmidt, M.J.J., Sheikh, M.A., Li, L., Three-dimensional transient finite element analysis of the laser enamelling process and moving heat source and phase change considerations, In Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 217, 753–764, 2003.
  • Kolossov, S., Boillat, E., Glardon, R., Fischer, P., Locher, M., 3D FE simulation for temperature evolution in the selective laser sintering process, International Journal of Machine Tools and Manufacture, 44, 117–123, 2004.
  • Roberts, I.A., Wang, C.J., Esterlein, R., Stanford, M., Mynors, D.J., A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing, International Journal of Machine Tools and Manufacture, 49, 916–923, 2009.
  • Romano, J., Ladani, L., Sadowski, M., Thermal modeling of laser based additive manufacturing processes within common materials, Procedia Manufacturing, 1, 238–250, 2015.
  • Dong, L., Correia, J.P.M., Barth, N., Ahzi, S., Finite element simulations of temperature distribution and of densification of a titanium powder during metal laser sintering, Additive Manufacturing, 13, 37–48, 2017.
  • Bai, P.K., Cheng, J., Liu, B., Wang, W.F., Numerical simulation of temperature field during selective laser sintering of polymer-coated molybdenum powder, Transactions Nonferrous Metals Society of China, 16, 603–607, 2006.
  • Thompson, S.M., Bian, L., Shamsaei, N., Yadollahi, A., An overview of direct laser deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Additive Manufacturing, 8, 36-62, 2015.
  • DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Heid, A.W., De, A., Zhang, W., Additive manufacturing of metallic components–Process, structure and properties, Progress in Materials Science, 92, 112–224, 2018.
  • Grujicic, M., Cao, G., Figliola, R.S., Computer simulations of the evolution of solidification microstructure in the LENS rapid fabrication process, Applied Surface Science, 183, 43–57, 2001.
  • Fischer, P., Locher, M., Romano, V., Weber, H.P., Kolossov, S., Glardon, R., Temperature measurements during selective laser sintering of titanium powder, International Journal of Machine Tools and Manufacture, 44, 1293–1296, 2004.
  • Tang, Y.J., Zhang, Y.Z., Liu, Y.T., Numerical and experimental investigation of laser additive manufactured Ti2AlNb-based alloy, Journal of Alloys and Compounds, 727, 196–204, 2017.
  • Gan, Z., Liu, H., Li, S., He, X., Yu, G., Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron, International Journal of Heat and Mass Transfer, 111, 709–722, 2017.
  • Liu, H., Hao, J., Han, Z., Yu, G., He, X., Yang, H., Microstructural evolution and bonding characteristic in multi-layer laser cladding of NiCoCr alloy on compacted graphite cast iron, Journal of Materials Processing Technology, 232, 153–164, 2016.
  • Bikas, H., Stavropoulos, P., Chryssolouris, G., Additive manufacturing methods and modelling approaches: a critical review, The International Journal of Advanced Manufacturing Technology, 83, 389–405, 2016.