High Dimensional Quantum Digital Signature Depending on Entanglement Swapping

High Dimensional Quantum Digital Signature Depending on Entanglement Swapping

While a single qubit information can be carried with a single photon in 2−dimensional quantum technology, it is possible to carry more than one qubit information with a single photon in high-dimensional quantum technologies. The amount of qubit to be transported depends on the size of the system obtained in the high dimension. In other words, the more high-dimensional quantum structure it creates, the more qubit-carrying system is obtained. In this study, a high dimensional quantum digital signature(QDS) scheme is proposed for multi-partied by using entanglement swapping and super-dense coding. QDS, which is proposed as highdimensional, allows more data and high-rate keys to be transferred. Security analysis of propesed QDS in high-dimensional show that the propablity of anyone obtaining information is much lower than in qubit states. Since all data(quantum and classic) in this protocol is instantly sent by using entanglement channels it is more resilient eavesdropping attacks. Today, developments in highdimensional experimental studies show that the high-dimensional QDS proposed in this study can be implemented practically.

___

  • [1] D. Gottesman and I. Chuang, “Quantum digital signatures,” eprint arXiv:quant-ph/0105032, 2001. [Online]. Available: https://arxiv.org/pdf/quant-ph/0105032.pdf
  • [2] L. Lamport, “Constructing digital signatures from a one-way function,” Tech. Rep., 1979.
  • [3] X. Zhao, N. Zhou, H. Chen, and L. Gong, “Multiparty quantum key agreement protocol with entanglement swapping,” International Journal of Theoretical Physics, vol. 58, no. 2, pp. 436– 450, 2019.
  • [4] C. Li, X. Chen, H. Li, Y. Yang, and J. Li, “Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended bell state,” Quantum Information Processing, vol. 18, no. 5, pp. 1–12, 2019.
  • [5] X. Cai, T. Wang, C. Wei, and F. Gao, “Cryptanalysis of multiparty quantum digital signatures,” Quantum Information Processing, vol. 18, no. 8, pp. 1–12, 2019.
  • [6] M. Zhang and H. Li, “Weak blind quantum signature protocol based on entanglement swapping,” Photon. Res., vol. 3, no. 6, pp. 324–328, 2015.
  • [7] W. Qu, Y. Zhang, H. Liu, T. Dou, J. Wang, Z. Li, S. Yang, and H. Ma, “Multi-party ring quantum digital signatures,” Journal of the Optical Society of America B Optical Physics, vol. 36, no. 5, pp. 1335–1341, 2019.
  • [8] H. Qin, W. K. S. Tang, and R. Tso, “Quantum (t, n) threshold group signature based on bell state,” Quantum Information Processing, vol. 19, no. 2, pp. 1–10, 2020.
  • [9] C. Weng, Y. Lu, R. Gao, Y. Xie, J. Gu, C. Li, B. Li, H. Yin, and Z. Chen, “Secure and practical multiparty quantum digital signatures,” Opt. Express, vol. 29, no. 17, pp. 27 661–27 673, 2021.
  • [10] P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson, J. Jeffers, and G. S. Buller, “Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light,” Nature Communications, vol. 3, pp. 1–8, 2012.
  • [11] T. Wang, X. Cai, Y. Ren, and R. Zhang, “Security of quantum digital signatures for classical messages,” Scientific Reports, vol. 5, pp. 1–4, 2015.
  • [12] H. Yin, Y. Fu, and Z. Chen, “Practical quantum digital signature,” Physical Review A, vol. 93, no. 3, pp. 1–13, 2016.
  • [13] H. Yin, Y. Fu, H. Liu, Q. Tang, J. Wang, L. You, W. Zhang, S. Chen, Z. Wang, Q. Zhang, T. Chen, Z. Chen, and J. Pan, “Experimental quantum digital signature over 102 km,” Physical Review A, vol. 95, no. 3, pp. 1–10, 2017.
  • [14] H. Yin, W. Wang, Y. Tang, Q. Zhao, H. Liu, X. Sun, W. Zhang, H. Li, I. V. Puthoor, L. You, E. Andersson, Z. Wang, Y. Liu, X. Jiang, X. Ma, Q. Zhang, M. Curty, T. Chen, and J. Pan, “Experimental measurement-device-independent quantum digital signatures over a metropolitan network,” Physical Review A, vol. 95, no. 4, pp. 1–5, 2017.
  • [15] Y. Lu, X. Cao, C. Weng, J. Gu, Y. Xie, M. Zhou, H. Yin, and Z. Chen, “Efficient quantum digital signatures without symmetrization step,” Opt. Express, vol. 29, no. 7, pp. 10 162– 10 171, 2021.
  • [16] H. Yin, Y. Fu, C. Li, C. Weng, B. Li, J. Gu, Y. Lu, S. Huang, and Z. Chen, “Experimental quantum secure network with digital signatures and encryption,” National Science Review, vol. 10, no. 4, pp. 1–11, 2022.
  • [17] Y. Pelet, I. V. Puthoor, N. Venkatachalam, S. Wengerowsky, M. Lonˇcari´c, S. P. Neumann, B. Liu, ˇ Z. Samec, M. Stipˇcevi´c, R. Ursin, E. Andersson, J. G. Rarity, D. Aktas, and S. K. Joshi, “Unconditionally secure digital signatures implemented in an eight-user quantum network,” New Journal of Physics, vol. 24, no. 9, pp. 1–11, 2022.
  • [18] G. J. Mooney, G. A. L. White, C. D. Hill, and L. C. L. Hollenberg, “Generation and verification of 27-qubit greenbergerhorne- zeilinger states in a superconducting quantum computer,” Journal of Physics Communications, vol. 5, no. 9, pp. 1–18, 2021.
  • [19] I. Vagniluca, B. Da Lio, D. Rusca, D. Cozzolino, Y. Ding, H. Zbinden, A. Zavatta, L. K. Oxenløwe, and D. Bacco, “Efficient time-bin encoding for practical high-dimensional quantum key distribution,” Phys. Rev. Applied, vol. 14, pp. 1–8, 2020.
  • [20] P. Imany, J. A. Jaramillo, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50- ghz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express, vol. 26, no. 2, pp. 1825–1840, 2018.
  • [21] S. Paesani, J. F. F. Bulmer, A. E. Jones, R. Santagati, and A. Laing, “Scheme for universal high-dimensional quantum computation with linear optics,” Physical Review Letters, vol. 126, no. 23, pp. 1–6, 2021.
  • [22] Y. Shen, I. Nape, X. Yang, X. Fu, M. Gong, D. Naidoo, and A. Forbes, “Creation and control of high-dimensional multipartite classically entangled light,” Light: Science & Applications, vol. 10, no. 1, pp. 1–10, 2021.
  • [23] V. Srivastav, N. H. Valencia, W. McCutcheon, S. Leedumrongwatthanakun, S. Designolle, R. Uola, N. Brunner, and M. Malik, “Quick quantum steering: Overcoming loss and noise with qudits,” Physical Review X, vol. 12, no. 4, pp. 1–13, 2022.
  • [24] Z. Hu and S. Kais, “The wave-particle duality of the qudit quantum space and the quantum wave gates,” arXiv e-prints, p. arXiv:2207.05213, 2022. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/2207/2207.05213.pdf
  • [25] D. Cozzolino, B. Da Lio, D. Bacco, and L. Katsuo Oxenlowe, “High-dimensional quantum communication: benefits, progress, and future challenges,” arXiv e-prints, p. arXiv:1910.07220, 2019. [Online]. Available: https://arxiv.org/pdf/1910.07220.pdf
  • [26] J. Zhao and Y. Tian, “Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level bell states,” Quantum Information Processing, vol. 16, no. 7, pp. 1–20, 2017.
  • [27] S. Lin, Y. Sun, X.-F. Liu, and Z.-Q. Yao, “Quantum private comparison protocol with d-dimensional bell states,” Quantum Information Processing, vol. 12, no. 1, pp. 559–568, 2013.
  • [28] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and highdimensional quantum computing,” Frontiers in Physics, vol. 8, pp. 1–24, 2020.
  • [29] E. Acar, S. G¨und¨uz, G. Akpınar, and I. Yılmaz, “Highdimensional grover multi-target search algorithm on cirq,” European Physical Journal Plus, vol. 137, no. 2, pp. 1–9, 2022.
  • [30] M. ˙ Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors bell experiment via entanglement swapping,” Phys. Rev. Lett., vol. 71, pp. 4287–4290, 1993.
  • [31] F. Wang, M. Erhard, A. Babazadeh, M. Malik, M. Krenn, and A. Zeilinger, “Generation of the complete four-dimensional bell basis,” Optica, vol. 4, no. 12, pp. 1–6, 2017.
  • [32] V. Srivastav, N. H. Valencia, W. McCutcheon, S. Leedumrongwatthanakun, S. Designolle, R. Uola, N. Brunner, and M. Malik, “Quick quantum steering: Overcoming loss and noise with qudits,” Physical Review X, vol. 12, no. 4, pp. 1–13, 2022.
  • [33] Y. Zhou, M. Mirhosseini, S. Oliver, J. Zhao, S. M. H. Rafsanjani, M. P. J. Lavery, A. E. Willner, and R. W. Boyd, “Using all transverse degrees of freedom in quantum communications based on a generic mode sorter,” Optics Express, vol. 27, no. 7, pp. 10 383–10 394, 2019.
  • [34] B. Da Lio, D. Cozzolino, N. Biagi, Y. Ding, K. Rottwitt, A. Zavatta, D. Bacco, and L. K. Oxenlowe, “Path-encoded highdimensional quantum communication over a 2-km multicore fiber,” npj Quantum Information, vol. 7, pp. 1–6, 2021.
  • [35] T. Feng, Q. Xu, L. Zhou, M. Luo, W. Zhang, and X. Zhou, “Quantum information transfer between a two-level and a fourlevel quantum systems,” Photon. Res., vol. 10, no. 12, pp. 2854– 2865, 2022.
  • [36] H. Iqbal and W. O. Krawec, “New security proof of a restricted high-dimensional qkd protocol,” arXiv e-prints, p. arXiv:2307.09560, 2023. [Online]. Available: https://arxiv.org/ pdf/2307.09560.pdf
  • [37] Y. Chi, J. Huang, Z. Zhang, J. Mao, Z. Zhou, X. Chen, C. Zhai, J. Bao, T. Dai, H. Yuan, M. Zhang, D. Dai, B. Tang, Y. Yang, Z. Li, Y. Ding, L. K. Oxenlowe, M. G. Thompson, J. L. O’Brien, Y. Li, Q. Gong, and J. Wang, “A programmable qudit-based quantum processor,” Nature Communications, vol. 13, pp. 1– 10, 2022. 28