Computational study of combustion characteristics and flame stability of a cavity-stabilized burner

A fundamental understanding of the stabilization mechanisms of a flame within very small spaces by the cavity method is of both fundamental and practical significance. However, the precise mechanism by which the cavity method generally provides increased flame stability remains unclear and warrants further study. This study relates to the combustion characteristics and flame stability of a micro-structured cavity-stabilized burner. Numerical simulations are conducted to gain insights into burner performance such as temperatures, reaction rates, species concentrations, and flames. The effects of different design parameters on flame stability are investigated. The critica factors affecting combustion characteristics and flame stability are determined. Design recommendations are provided. The results indicate that the inlet velocity of the mixture is a critical factor in assuring flame stability within the cavity-stabilized burner. There is a narrow range of inlet velocities that permit sustained combustion within the cavity-stabilized burner. Fast flows can cause blowout and slow flows can cause extinction. There exists an optimum inlet velocity for greatest flame stability. The combustion is stabilized by recirculation of hot combustion products induced by the cavity structure. The thermal conductivity of the burner walls plays a vital role in flame stability. Improvements in flame stability are achievable by using walls with anisotropic thermal conductivity. Burner dimensions greatly affect flame stability. Burners with large dimensions lead to a delay in flame ignition and may cause blowout. Heat-insulating materials are favored to minimize external heat losses. There are issues of efficiency loss for fuel-rich combustion cases.

___

  • [1] Wegeng, R. S., Drost, M. K. “Developing new miniature energy systems”, Mechanical Engineering 1994: 116(9); 82-85.
  • [2] Ameel, T. A., Warrington, R. O., Wegeng, R. S., Drost, M.K. “Miniaturization technologies applied to energy systems”, Energy Conversion and Management 1997: 38(10-13); 969-982.
  • [3] Epstein, A. H. “Millimeter-scale, micro-electro-mechanical systems gas turbine engines”, Journal of Engineering for Gas Turbines and Power 2004: 126(2); 205-226.
  • [4] Epstein, A. H. “Millimeter-scale, MEMS gas turbine engines”, ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, June 16-19, 2003, Atlanta, Georgia, United States, Paper Number: GT2003-38866, Pages 669-696, Published Online: February 4, 2009, ISBN: 0-7918-3687-8, Conference Sponsors: International Gas Turbine Institute.
  • [5] Peterson, R. B. “Small packages. Miniaturization technologies applied to energy systems”, Mechanical Engineering 2001: 123(06); 58-61.
  • [6] Kota, S., Ananthasuresh, G. K., Crary, S. B., Wise, K. D. “Design and fabrication of microelectromechanical systems”, Journal of Mechanical Design 1994: 116(4); 1081-1088.
  • [7] Tadigadapa, S. A., Najafi, N. “Developments in microelectromechanical systems (MEMS): A manufacturing perspective”, Journal of Manufacturing Science and Engineering 2003: 125(4); 816-823.
  • [8] Ananthasuresh, G. K., Howell, L. L. “Mechanical design of compliant microsystems-A perspective and prospects”, Journal of Mechanical Design 2005: 127(4); 736-7383.
  • [9] E, J., Ding, J., Chen, J., Liao, G., Zhang, F., Luo, B. “Process in micro-combustion and energy conversion of micro power system: A review”, Energy Conversion and Management 2021: 246; 114664.
  • [10] E, J., Luo, B., Han, D., Chen, J., Liao, G., Zhang, F., Ding, J. “A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion”, Energy 2022: 239; 122509.
  • [11] Wan, J., Fan, A. “Recent progress in flame stabilization technologies for combustion-based micro energy and power systems”, Fuel 2021: 286(2); 119391.
  • [12] Gharehghani, A., Ghasemi, K., Siavashi, M., Mehranfar, S. “Applications of porous materials in combustion systems: A comprehensive and state-of-the-art review”, Fuel 2021: 304; 121411.
  • [13] Ju, Y., Maruta, K. “Microscale combustion: Technology development and fundamental research”, Progress in Energy and Combustion Science 2011: 37(6); 669-715.
  • [14] Chou, S. K., Yang, W. M., Chua, K. J., Li, J., Zhang, K. L. “Development of micro power generators - A review”, Applied Energy 2011: 88(1); 1-16.
  • [15] Kim, J., Yu, J., Lee, S., Tahmasebi, A., Jeon, C. H., Lucas, J. “Advances in catalytic hydrogen combustion research: Catalysts, mechanism, kinetics, and reactor designs”, International Journal of Hydrogen Energy 2021: 46(80); 40073-40104.
  • [16] Walther, D. C., Ahn, J. “Advances and challenges in the development of power-generation systems at small scales”, Progress in Energy and Combustion Science 2011: 37(5); 583-610.
  • [17] Miwa, J., Asako, Y., Hong, C., Faghri, M. “Performance of gas-to-gas micro-heat exchangers”, Journal of Heat Transfer 2009: 131(5); 051801.
  • [18] Marques, C., Kelly, K. W. “Fabrication and performance of a pin fin micro heat exchanger”, Journal of Heat Transfer 2004: 126(3); 434-444.
  • [19] Zhao, Z., Zuo, Z., Wang, W., Kuang, N., Xu, P. “Experimental studies on a high performance thermoelectric system based on micro opposed flow porous combustor”, Energy Conversion and Management 2022: 253; 115157.
  • [20] Sadatakhavi, S. M. R., Tabejamaat, S., Zade, M. E. A., Kankashvar, B., Nozari, M. R. “Numerical and experimental study of the effects of fuel injection and equivalence ratio in a can micro- combustor at atmospheric condition”, Energy 2021: 225; 120166.
  • [21] Guan, J., Lv, X., Spataru, C., Weng, Y. “Experimental and numerical study on self-sustaining performance of a 30-kW micro gas turbine generator system during startup process”, Energy 2021: 236; 121468.
  • [22] Seo, J. M., Lim, H. S., Park, J. Y., Park, M. R., Choi, B. S. “Development and experimental investigation of a 500-W class ultra-micro gas turbine power generator”, Energy 2017: 124; 9-18.
  • [23] Waitz, I. A., Gauba, G., Tzeng, Y. S. “Combustors for micro-gas turbine engines”, Journal of Fluids Engineering 1998: 120(1); 109-117.
  • [24] Spadaccini, C. M., Mehra, A., Lee, J., Zhang, X., Lukachko, S., Waitz, I. A. “High power density silicon combustion systems for micro gas turbine engines”, Journal of Engineering for Gas Turbines and Power 2003: 125(3); 709-719.
  • [25] Dessornes, O., Landais, S., Valle, R., Fourmaux, A., Burguburu, S., Zwyssig, C., Kozanecki, Z. “Advances in the development of a microturbine engine”, Journal of Engineering for Gas Turbines and Power 2014: 136(7); 071201.
  • [26] Nozari, M., Tabejamaat, S., Sadeghizade, H., Aghayari, M. “Experimental investigation of the effect of gaseous fuel injector geometry on the pollutant formation and thermal characteristics of a micro gas turbine combustor”, Energy 2021: 235; 121372.
  • [27] Lee, D. H., Park, D. E., Yoon, E., Kwon, S. “A MEMS piston-cylinder device actuated by combustion”, Journal of Heat Transfer 2003: 125(3); 487-493.
  • [28] Cunningham, C. S., Ransom, D., Wilkes, J., Bishop, J., White, B. “Mechanical design features of a small gas turbine for power generation in unmanned aerial vehicles”, ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, June 15-19, 2015, Montreal, Quebec, Canada, Paper Number: GT2015-43491, V008T23A021, Published Online: August 12, 2015, ISBN: 978-0-7918-5679-6, Conference Sponsors: International Gas Turbine Institute.
  • [29] Kaisare, N. S., Vlachos, D. G. “A review on microcombustion: Fundamentals, devices and applications”, Progress in Energy and Combustion Science 2012: 38(3); 321-359.
  • [30] Maruta, K. “Micro and mesoscale combustion”, Proceedings of the Combustion Institute 2011: 33(1); 125-150.
  • [31] Dunn-Rankin, D., Leal, E. M., Walther, D. C. “Personal power systems”, Progress in Energy and Combustion Science 2005: 31(5-6); 422-465.
  • [32] Fernandez-Pello, A. C. “Micropower generation using combustion: Issues and approaches”, Proceedings of the Combustion Institute 2002: 29(1); 883-899.
  • [33] Lyons, K. M. “Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: Experiments”, Progress in Energy and Combustion Science 2007: 33(2); 211-231.
  • [34] Shanbhogue, S. J., Husain, S., Lieuwen, T. “Lean blowoff of bluff body stabilized flames: Scaling and dynamics”, Progress in Energy and Combustion Science 2009: 35(1); 98-120.
  • [35] Choi, J., Lee, W., Rajasegar, R., Lee, T., Yoo, J. “Effects of hydrogen enhancement on mesoscale burner array flame stability under acoustic perturbations”, International Journal of Hydrogen Energy 2021: 46(74); 37098-37107.
  • [36] McManus, K. R., Poinsot, T., Candel, S. M. “A review of active control of combustion instabilities”, Progress in Energy and Combustion Science 1993: 19(1); 1-29.
  • [37] Sadanandan, R., Chakraborty, A., Arumugam, V. K., Chakravarthy, S. R. “Partially premixed flame stabilization in the presence of a combined swirl and bluff body influenced flowfield: An experimental investigation”, Journal of Engineering for Gas Turbines and Power 2020: 142(7); 071010.
  • [38] Kundu, K. M., Banerjee, D., Bhaduri, D. “On flame stabilization by bluff-bodies”, Journal of Engineering for Gas Turbines and Power 1980: 102(1); 209-214.
  • [39] Rasmussen, C. C., Driscoll, J. F., Hsu, K. Y., Donbar, J. M., Gruber, M. R., Carter, C. D. “Stability limits of cavity-stabilized flames in supersonic flow”, Proceedings of the Combustion Institute 2005: 30(2); 2825-2833.
  • [40] Kato, N., Im, S. K. “Flame dynamics under various backpressures in a model scramjet with and without a cavity flameholder”, Proceedings of the Combustion Institute 2021: 38(3); 3861-3868.
  • [41] Wang, S., Fan, A. “Combustion regimes of syngas flame in a micro flow reactor with controlled temperature profile: A numerical study”, Combustion and Flame 2021: 230; 111457.
  • [42] Ni, S., Zhao, D., You, Y., Huang, Y., Wang, B., Su, Y. “NOx emission and energy conversion efficiency studies on ammonia-powered micro-combustor with ring-shaped ribs in fuel-rich combustion”, Journal of Cleaner Production 2021: 320; 128901.
  • [43] Westbrook, C. K., Dryer, F. L. “Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames”, Combustion Science and Technology 1981: 27(1-2); 31-43.
  • [44] Westbrook, C. K., Dryer, F. L. “Chemical kinetic modeling of hydrocarbon combustion”, Progress in Energy and Combustion Science 1984: 10(1); 1-57.
  • [45] Jiménez, J. “Near-wall turbulence”, Physics of Fluids 2013: 25(10); 101302.
  • [46] Cellek, M. S. “Turbulent flames investigation of methane and syngas fuels with the perspective of near-wall treatment models”, International Journal of Hydrogen Energy 2020: 45(60); 35223- 35234.
  • [47] Norton, D. G., Vlachos, D. G. “Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane-air mixtures”, Chemical Engineering Science 2003: 58(21); 4871-4882.
  • [48] Norton, D. G., Vlachos, D. G. “A CFD study of propane-air microflame stability”, Combustion and Flame 2004: 138(1-2); 97-107.
  • [49] Leach, T. T., Cadou, C. P. “The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors”, Proceedings of the Combustion Institute 2005: 30(2); 2437- 2444.
  • [50] Leach, T. T., Cadou, C. P., Jackson, G. S. “Effect of structural conduction and heat loss on combustion in micro-channels”, Combustion Theory and Modelling 2006: 10(1); 85-103.
  • [51] Chen, C. H., Ronney, P. D. “Scale and geometry effects on heat-recirculating combustors”, Combustion Theory and Modelling 2013: 17(5); 888-905.
  • [52] Kaisare, N. S., Vlachos, D. G. “Optimal reactor dimensions for homogeneous combustion in small channels”, Catalysis Today 2007: 120(1); 96-106.
  • [53] Xu, X., Pereira, L. F. C., Wang, Y., Wu, J., Zhang, K., Zhao, X., Bae, S., Bui, C. T., Xie, R., Thong, J. T. L., Hong, B. H., Loh, K. P., Donadio, D., Li, B., Özyilmaz, B. “Length-dependent thermal conductivity in suspended single-layer graphene”, Nature Communications 2014: 5; 3689.
  • [54] Wei, Z., Ni, Z., Bi, K., Chen, M., Chen, Y. “In-plane lattice thermal conductivities of multilayer graphene films”, Carbon 2011: 49(8); 2653-2658.
  • [55] Liu, W., Wang, L., Su, S., Wu, Z., Guo, Y., Du, K. “Study of the flame flow and combustion characteristics of pool fires around a bluff body in the ship engine room”, Case Studies in Thermal Engineering 2021: 28; 101514.
  • [56] Huang, Y., He, X., Jin, Y., Zhu, H., Zhu, Z. “Effect of non-uniform inlet profile on the combustion performance of an afterburner with bluff body”, Energy 2021: 216; 119142.
  • [57] Yan, Y., Wu, G., Huang, W., Zhang, L., Li, L., Yang, Z. “Numerical comparison study of methane catalytic combustion characteristic between newly proposed opposed counter-flow micro- combustor and the conventional ones”, Energy 2019: 170; 403-410.
  • [58] Rodrigues, J. M., Ribeiro, M. F., Fernandes, E. C. “Catalytic activity of electrodeposited cobalt oxide films for methane combustion in a micro-channel reactor”, Fuel 2018: 232; 51-59.
  • [59] Miller, J. A., Bowman, C. T. “Mechanism and modeling of nitrogen chemistry in combustion”, Progress in Energy and Combustion Science 1989: 15(4); 287-338.
  • [60] Glarborg, P., Miller, J. A., Ruscic, B., Klippenstein, S. J. “Modeling nitrogen chemistry in combustion”, Progress in Energy and Combustion Science 2018: 67; 31-68
International Journal of Energy Studies-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Türkiye Enerji Stratejileri ve Politikaları Araştırma Merkezi (TESPAM)