Installation of solar power plant in Adıyaman region and analysis of solar energy potential

Installation of solar power plant in Adıyaman region and analysis of solar energy potential

Energy is one of the most necessary and fundamental needs for human beings to continue their lives. Solar energy, which is one of the most important renewable energy sources, has great energy potential in our country with its long radiation duration and radiation amount. The primary thing to do in solar power plant (SPP) installation is to analyze the climatic characteristics of the region. Therefore, having and analyzing the meteorological data of the region has important advantages for the solar power plant to be established. The importance of solar radiation data in the installation of a solar power plant in a region is directly proportional to the payback period of the plant under normal conditions. In this study, a 1 MW SPP feasibility study was conducted in Besni district of Adıyaman province. Depending on the energy potential of the regions, it is calculated that the payback period is between 2-5.7 years for Adıyaman province. Considering the state's electricity pricing, it is seen that the payback period in the industry is about 2 years, while it has a period of 5.7 years for house installation. SPP is analyzed in the light of solar radiation data in the Adıyaman region which will be a pioneer for future studies thanks to the depreciation period as well as analyses performed. In addition to these, the parameters to be considered during the SPP installation stages will be specified in detail.

___

  • Karapekmez, A., & Dincer, I. (2020). Comparative efficiency and environmental impact assessments of a solar-assisted combined cycle with various fuels. Applied Thermal Engineering, 164, 114409.
  • Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., Van Deventer, W., ... & Stojcevski, A. (2018). Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews, 81, 912-928.
  • Üstün, İ., Üneş, F., Mert, İ., & Karakuş, C. (2022). A comparative study of estimating solar radiation using machine learning approaches: DL, SMGRT, and ANFIS. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(4), 10322-10345.
  • Ustun, I., Karakus, C., & Yagli, H. (2020). Empirical models for estimating the daily and monthly global solar radiation for Mediterranean and Central Anatolia region of Turkey. International Journal of Global Warming, 20(3), 249-275.
  • Özyurt, G., & Karabalık, K. (2009). Enerji verimliliği, binaların enerji performansı ve Türkiye’deki durum.TMMOB, İnşaat Mühendisleri Odası, Türkiye Mühendislik Haberleri, 457(54), 32-34.
  • Ferreira, A., Kunh, S. S., Fagnani, K. C., De Souza, T. A., Tonezer, C., Dos Santos, G. R., & Coimbra-Araújo, C. H. (2018). Economic overview of the use and production of photovoltaic solar energy in Brazil. Renewable and Sustainable Energy Reviews, 81, 181-191.
  • Kong, L. G., Chen, X. L., Gong, J. H., Fan, D. J., Wang, B. L., & Li, S. (2022). Optimization of the hybrid solar power plants comprising photovoltaic and concentrating solar power using the butterfly algorithm. Energy Conversion and Management, 257, 115310.
  • Şevik, S., & Aktaş, A. (2022). Performance enhancing and improvement studies in a 600 kW solar photovoltaic (PV) power plant; manual and natural cleaning, rainwater harvesting and the snow load removal on the PV arrays. Renewable Energy, 181, 490-503.
  • Bansal, N., Pany, P., & Singh, G. (2021). Visual degradation and performance evaluation of utility scale solar photovoltaic power plant in hot and dry climate in western India. Case Studies in Thermal Engineering, 26, 101010.
  • Ömeroğlu, G. (2018). Fotovoltaik-termal (PV/T) sistemin sayısal (CFD) ve deneysel analizi. Fırat University Journal of Engineering Science, 30(1), 161-167.
  • Çağlar, A. (2018). Farklı derece-gün bölgelerindeki şehirler için optimum eğim açısının belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 849-854.
  • Alcan, Y., Demir, M., & Duman, S. (2018). Sinop ilinin güneş enerjisinden elektrik üretim potansiyelinin ülkemiz ve Almanya ile karşılaştırarak incelenmesi. El-Cezeri Journal of Science and Engineering, 5(1), 35-44.
  • Kırcıoğlu, O., Ünlü, M., & Çamur, S. (2018). Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test. Sakarya University Journal of Science, 22(1), 85-93.
  • Meteoroloji Genel Müdürlüğü, (2022). The access site is given as follows; https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=undefined&m=Adiyaman. (01 November 2022).
  • Kallioğlu, M. A., Ercan, U., Avcı, A. S., Karakaya, H., & Durmuş, A. (2017). Adıyaman ilinde yatay düzleme gelen global güneş ışınım değerlerinin ampirik modeller ile geliştirilmesi. Science and Eng. J of Fırat Univ., 29(1), 151-159.
  • Aslan, M., Ulum, T., & Türkmenler, H. (2021). Adıyaman ilinin yenilenebilir enerji potansiyelinin belirlenmesi üzerine bir değerlendirme. Fırat University Journal of Engineering, 33(1), 263-274.
  • Taktak, F., & Ilı, M. (2018). Güneş enerji santrali (GES) geliştirme: Uşak örneği. Journal of Geomatics, 3(1), 1-21.
  • Internet, URL:https://www.enerjiatlasi.com/elektrik-fiyatlari/, (14 October 2022).
  • Lüle, F. (2018). Adıyaman ilinin enerji kaynakları potansiyeli. Journal of Agricultural Machinery Science, 14(1), 1-5.
  • Yalılı, M. (2021). Lisanslı fotovoltaik güneş enerji santrali yatırımının finansal analizi: Van ili örneği. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 1055-1074.