Experimental examination of a thin-film photovoltaic panel power characteristics under constant load during October-March period in Mersin province

Experimental examination of a thin-film photovoltaic panel power characteristics under constant load during October-March period in Mersin province

In this study, the power generated by a thin-film photovoltaic panel was measured under real atmospheric conditions in Mersin between October and March. The experimental setup involves a stand with adjustable inclination around a single axis, current meter and voltage meter, pyrometer, and two computers on a mobile rack. The power generated was determined as a function of solar irradiance using the data recorded with three minutes intervals in each measured day, during the six months period. The average generated power, irradiance, and efficiency were calculated for each measured month using the data collected. The generated power and efficiency values are found to be different from that of the values provided in photovoltaic panel manufacturer specifications.

___

  • Green, M. A. 2000. Photovoltaics: technology overview, Energy Policy, 28 (14), 989-998.
  • Durisch W., Tille D., Wörz A., and Plapp W. 2000. Characterization of photovoltaic generators, Applied Energy, 65, 273-284.
  • Thenevard D. and Pelland S. 2011. Estimating the uncertainty in long-term photovoltaic yield predictions, Solar Energy, 91, 432–445.
  • Celik A. N. 2007. Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaic systems, Renewable Energy, 32, 2096–2115.
  • Sarıoğlu G., Eke R. 2012. Çok kristalli silisyum (mc-Si) bir fotovoltaik modülün kısmi gölgelenme altında parametrelerinin incelenmesi, SDU Journal of Science, 7 (2), 123-140.
  • Skoplaki E., Palyvos J. A. 2009. Operating temperature of photovoltaic modules: A survey of pertinent correlations, Renewable Energy, 34, 23–29.
  • Dubey S., Sarvaiya J. N. and Seshadri B. 2012. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World A Review, Energy Procedia, 33, 311 – 321.
  • Mavromatakis F., Kavoussanaki E., Vignola F., Franghiadakis, Y. 2014. Measuring and estimating the temperature of photovoltaic modules, Solar Energy, 110, 656–666.
  • Andrews R. W., Pollar A., Pearce J. M. 2013. The effects of snowfall on solar photovoltaic performance, Solar Energy, 92, 84–97.
  • Mejisa F., Kleissl J. And Bosch J. L. 2013. The effect of dust on solar photovoltaic systems, Energy Procedia, 49, 2370 – 2376.
  • Rao A., Pillai R., Ramamurthy P., 2014. Influence of dust deposition on photovoltaic panel performance, Energy Procedia, 54, 690 – 700.
  • Amrouche B. 2014. Improvement and experimental validation of a simple behavioral model for photovoltaic modules, Solar Energy Materials & Solar Cells, 128, 204–214.
  • Tsai H. L. 2010. Insolation-oriented model of photovoltaic module using Mat lab/Simulink, Solar Energy, 84, 1318–1326.
  • Eke, R. and Oktik Ş. 2007. Muğla iklim koşullarına AS1206 tek kristal silisyum (m-Si) fotovoltaik modülün seri ve paralel direnç değerlerinin mevsimsel olarak değişimi, Çankaya Üniversitesi Fen-Edebiyat Fakültesi,Journal of Arts and Sciences, 7, 21-32.
  • Kosyachenko L. A., Mykytyuk T. I., Fodchuk I. M., Maslyanchuk O.L., Martinez O. S., Perez E. R., Mathew X. 2014. Electrical characteristics of thin-film CdS/CdMg Teheterostructure for tandem solar cells, Solar Energy, 109, 144– 152.
  • Skoplaki E., Palyvos J. A. 2009. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations, Solar Energy, 83, 614–624.
  • Ghani F., Rosengarten G., Duke M., and Carson J. K. 2014. The numerical calculation of single-diode solar-cell modelling parameters, Renewable Energy, 72, 105-112.
  • Khezzar R, Zereg M., Khezzar A. 2014. Modeling improvement of the four parameter model for photovoltaic modules, Solar Energy, 110, 452–462.
  • Celik A. N. and Acikgoz N. 2006. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models, Applied Energy, 84, 1-15.
  • Özçalık H. R., Yılmaz Ş. and Kılıç E. 2013. Güneş Pilinin Bir Diyotlu Eşdeğer Devre Yardımıyla Matematiksel Modelinin Çıkartılması ve Parametrelerinin İncelenmesi, KSU Journal of Engineering Sciences, 16(1), 18-27.
  • Habbati B., Ramdani Y., Moulay F. A. 2014. Detailed modeling of photovoltaic module using matlab, NRIAG Journal of Astronomy and Geophysics, 3, 53– 61.
  • Kline S. J. and McClintock F. A. 1953. Describing Uncertainties in Single-Sample Experiments, Mechanical Engineering, 75, 3-8.
  • Kaldellis J and Dimitrios Zafirakis D. 2012. Experimental Investigation of The Optimum Photovoltaic Panels’ Tilt Angle During The Summer Period, Energy, 305-314.
  • Jakhrania A. Q., Othmana A. K., Ragai A., Rigit H., Saleem Raza Samo Shakeel Ahmed Kamboh. 2012. A Novel Analytical Model for Optimal Sizing of Standalone Photovoltaic Systems, Energy, 46(1), 675-682.
  • Ma T., Yanga H. 2016. Long Term Performance Analysis of a 19.8kWp Standalone Photovoltaic System in a Remote Island, Energy Procedia, 103, 183-188.
  • Kamali S. 2016. Feasibility analysis of standalone photovoltaic electrification system in a residential building in Cyprus, Renewable and Sustainable Energy Reviews, 65, Pages 1279-1284.