Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples

Comparative exergy analysis of the cascade cooling system for alternative refrigerant couples

In this work, a comparative exergy analysis of cascade cooling system working with alternative refrigerant couples has been carried out. In study; R454C and R-744 as low temperature cycle (LTC) refrigerant and R1234ze, R1234yf and R717 as high temperature cycle (HTC) refrigerant were used. The refrigerants used in the study have zero ODP and low GWP values. Exergy analysis was carried out to investigate the effect to exergy efficiency of operation parameters in cascade cooling system. The exergy efficiency values of the cascade cooling system decreases with increasing evaporator temperature for all refrigerant couples. The exergy efficiency values of the cascade cooling system decreases with increasing the condenser temperature. Obtained results show that in all cases, the refrigerant couple R454C/R717 has the highest exergy efficiency.

___

  • Sun, Z., Wang, Q., Xie, Z., Liu, S., Su, D. and Cui, Q. 2019. Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system. Energy, 170, 1170-1180. Doi: 10.1016/j.energy.2018.12.055
  • Gholamian, E., Hanafizadeh, P. and Ahmadi, P. 2018. Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Appl. Therm. Eng., 137, 689-699. Doi: 10.1016/j.applthermaleng. 2018.03.055
  • Kilicarslan, A. and Hosoz, M. 2010. Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples. Energy Convers. Manage., 51 (12), 2947-2954. Doi:10.1016 /j.enconman.2010.06.037
  • Roy, R. and Mandal, B.K. 2018. Exergy analysis of cascade refrigeration system working with refrigerant pairs R41-R404A and R41-R161. In IOP Conf. Ser., Mater. Sci. Eng., 377 (1), 012036. Doi:10.1088/1757-899X/377/1/012036
  • Kanoğlu, M. 2002. Exergy analysis of multistage cascade refrigeration cycle used for natural gas liquefaction. Int. J. Energy Res., 26 (8),763-774. Doi:10.1002/er.814
  • Dopazo, J.A., Fernández-Seara, J., Sieres, J. and Uhía, F.J. 2009. Theoretical analysis of a CO2–NH3 cascade refrigeration system for cooling applications at low temperatures, Appl. Therm. Eng., 29 (8-9), 1577-1583. Doi: 10.1016/j.applthermaleng.2008.07.006
  • Rezayan, O. and Behbahaninia, A. 2011. Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy, 36 (2), 888-895. Doi: 10.1016/j.energy.2010.12.022
  • Lee, T.S., Liu, C.H. and Chen T.W. 2006. Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems, Int. J. Refrig., 29 (7), 1100-1108. Doi: 10.1016/j.ijrefrig.2006.03.003
  • Getu, H.M. and Bansal, P.K. 2008. Thermodynamic analysis of an R744-R717 cascade refrigeration system, Int. J. Refrig., 31 (1), 45-54. Doi: 10.1016 /j.ijrefrig.2007.06.014
  • Bingming, W., Huagen, W., Jianfeng, L. and Ziwen, X. 2008. Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor. Int. J. Refrig., 32 (6), 1358-1365. Doi: 10.1016/j.ijrefrig.2009.03.008
  • Dopazo, J.A. and Fernández-Seara, J. 2010. Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications. Int. J. Refrig., 34 (1), 257-267. Doi: 10.1016/j.ijrefrig.2010.07.010
  • Cabello, R., Sánchez, D., Llopis, R., Catalán, J., Nebot-Andrés, L. and Torrella, E. 2017. Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants. Appl. Therm. Eng., 110, 972-984. Doi: 10.1016/j.applthermaleng.2016.09.010
  • Eini, S., Shahhosseini, H., Delgarm, N., Lee, M. and Bahadori, A. 2016. Multi-objective optimization of a cascade refrigeration system: exergetic, economic, environmental and inherent safety analysis, Appl. Therm. Eng., 107, 804-817. Doi: 10.1016/j.applthermaleng. 2016.07.013
  • Llopis, R., Sanz-Kock, C., Cabello, R., Sánchez, D., Nebot-Andrés, L. and Catalán-Gil, J. 2016. Effects caused by the internal heat exchanger at the low temperature cycle a cascade refrigeration plant. Appl. Therm. Eng., 103, 1077-1086. Doi: 10.1016/j.applthermaleng .2016.04.075
  • Mosaffa, A.H., Farshi, L.G., Infante Ferreira, C.A. and Rosen, M.A. 2016. Exergoeconomic and environmental analyses of CO2 /NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers. Energy Convers. Manage., 117, 442-453. Doi: 10.1016 /j.enconman.2016.03.053
  • Queiroz, M.V.A., Panato, V.H., Antunes, A.H.P., Parise, J.A.R. and Bandarra Filho, E.P. 2016. Experimental comparison of a cascade refrigeration system operating with R744/R134a and R744/R404a. 16th International Refrigeration and Air Conditioning Conference (July 11 -14 Purdue Conferences). USA. 1785-1795. http://docs.lib.purdue.edu/iracc/1785
  • Dikmen, E., Şahin, A.Ş., Deveci, Ö.İ. and Akdağ, E. 2020. GWP Değeri Düşük Soğutucu Akışkanların Kullanıldığı Kaskad Soğutma Sisteminin Karşılaştırmalı Performans Analizi. ECSJE, 7(1), 338-345. Doi: /10.31202/ecjse. 630262
  • Engineering Equation Solver (EES) software, 10.614 Academic version, 2019.