THEORETICAL STUDY OF THE CARBONE(IV) DOPED ANATASE SURFACES OF TiO2

THEORETICAL STUDY OF THE CARBONE(IV) DOPED ANATASE SURFACES OF TiO2

In this study photocatalytic activity of TiO2 doped with C(IV) has been investigated using DFT (Density Functional Theory) calculations. This calculations are utilized to illuminate and classify the effect of C(IV)-doping on the electronic and structural properties of TiO2, neutral, stoichiometric clusters Ti7O18H and Ti25O55H10 cut from the anatase bulk structure and three new models for the C(IV)-doped TiO2 were developed. The DFT calculations were carried out by the hybrid B3LYP functional, by using double-zeta, LanL2DZ basis set. The DFT calculations indicated that C(IV)-doping of TiO2 enhances the visible-light photocatalytic activity.

___

  • A. Fujishima and K. Honda. Nature, 238, 37 (1972). doi:10.1038/238037a0. PMID:12635268.
  • A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A. 108 (1997) 1–35.
  • D. Bahnemann, J. Cunningham, M.A. Fox, E. Pelizzetti, P. Pichat, N. Serpone, in: G.R. Helz, R.G. Zepp, D.G. Crosby (Eds.), Aquatic and Surface Photochemistry, Lewis, Baco Raton, FL, 1994, p. 261.
  • P. Pichat, in: G. Ertl, H. Knozinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Photo-Catalysis, vol. 4, VCH, Weinheim, 1997, p. 2111.
  • D.F. Ollis, E. Pelizzetti, N. Serpone, Destruction of water contaminants, Environ. Sci. Technol. 25 (1991) 1523–1529.
  • D.W. Bahnemann, D. Bockelmann, R. Goslich, Mechanistic studies of water detoxification in illuminated TiO2 suspensions, Sol. Energy Mater. 24 (1991) –583.
  • C. Sousa, S. Tosoni, F. Illas Chem. Rev., 113 (2013), p. 4456
  • K. Hashimoto, H. Irie, A. Fujishima Jpn. J. Appl. Phys., 44 (2005), p. 8269
  • A. Fujishima, X. Zhang, D.A. Tryk Surf. Sci. Rep., 63 (2008), p. 515
  • X. Chen, S.S. Mao Chem. Rev., 107 (2007), p.
  • M.A. Henderson Surf. Sci. Rep., 66 (2011), p.
  • J. Tang, Z. Zou, and J. Ye. Catal. Lett. 92, 53 (2004). doi:10.1023/B:CATL. 20412.aa.
  • X. Xiang, D. Chang, Y. Jiang, C.M. Liu, and X.T. Zu. Can. J. Phys. 90, 39 (2012). doi:10.1139/p11-136.
  • B. Chi, L. Zhao, and T. Jin. J. Phys. Chem. C, , 6189 (2007). doi:10.1021/ jp067490n.
  • S.X. Zhang, S.Y. Wu, P. Xu, and L.L. Liu. Can. J. Phys. 88(1), 49 (2010). doi:10. /P09-110.
  • L.C. Jia, C.C. Wu, Y.Y. Li, S. Han, Z. Li, B. Chi, J. Pu, and L. Jian Appl. Phys. Lett. 98, 211903 (2011). doi:10.1063/1.3593147.
  • L.C. Jia, C.C. Wu, S. Han, N. Yao, Y. Li, Z. Li, B. Chi, J. Pu, and L. Jian. J. Alloys Compd. doi:10.1016/j.jallcom.2011.03.012.
  • Yelda Y. Gurkan 1, Esra Kasapbasi, Zekiye Cinar Chemical Engineering Journal 214 (2013) 34–
  • T. Homann, T. Bredow, K. Jug, Adsorption of small molecules on the anatase (100) surface, Surf. Sci. 555 (2004) 135–144.
  • T. Sekiya, M. Igarashi, S. Kurita, S. Tokekawa, M. Fujisawa, Structure dependence of reflection spectra of TiO2 single crystals, J. Elec. Spec. Rel. Phen. 92 (1998) 247–250.
  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
  • Stephens, P. J.; Devlin, F. J.; Ashvar, C. S.; Bak, K. L.; Taylor, P. R.; Frisch, M. J. ACS Symp. Ser. 1996, 629, 105.
  • P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg,” J. Chem. Phys., 82 (1985) 270-83.