Open-Hole Tensile Experiments of Thermoplastic Composite Laminates and Finite Element Analysis

Open-Hole Tensile Experiments of Thermoplastic Composite Laminates and Finite Element Analysis

Composites materials are used in automotive industry for their light weight and high strength properties. With the progress signed in a new polymer matrix, recyclable thermoplastic composite (TPC) materials, became an excellent alternative to conventional materials. In this paper glass fiber reinforced TPC materials manufactured with lamina sequence techniques of polyamide, polypropylene matrix materials were used to realize open hole tensile tests. Finite Element Analysis (FEA) were also performed by using commercial software. The open-hole tensile tests results were compared with standard tensile tests results to clarify circular hole influence on the stress-strain behavior of the TPC materials. FEA results were also compared with the experimental data.

___

  • [1] E. Martin, D. Leguillon, N. Carrere, An Extension of The Point-Stress Criterion Based On a Coupled Stress and Energy Fulfilment: Application to The Prediction of The Open-Hole Tensile Strength Of A Composite Plate, Structural Integrity and Durability of Advanced Composites, (2015) 425-444. DOI:10.1016/B978-0-08-100137-0.00017-1 [2] B. G. Green, M. R. Wisnom, S. R. Hallett, An Experimental Investigation into the Tensile Strength Scaling of Notched Composites. Composites Part A: Applied Science and Manufacturing, 38 (2007) 867-878. DOI:10.1016/j.compositesa.2006.07.008 [3] T.E. Tay, G. Liu, V.B.C. Tan, Damage Progression in Open-Hole Tension Laminates by the SIFT-EFM Approach. Journal of Composite Materials. 40 (2006) 971-992. DOI:10.1177/0021998305056386 [4] L.J. Hart-Smith Design and Analysis of Bolted and Riveted Joints in Fibrous Composite Structures. Recent Advances in Structural Joints and Repairs for Composite Materials. (2003) 211-254. DOI:10.1007/978-94-017-0329-1_7 [5] B. Hongchen, L. Guangyan, Progressive Failure Analysis On Scaled Open-Hole Tensile Composite Laminates. Composite Structures. 150 (2016) 173-180. DOI:10.1016/j.compstruct.2016.05.017 [6] G.H. Erçin, P.P. Camanho, J. Xavier, G. Catalanotti, S. Mahdi, P. Linde. Size Effects On the Tensile and Compressive Failure of Notched Composite Laminates. Composite Structures. 96 (2013) 736-744. DOI:10.1016/j.compstruct.2012.10.004 [7] B.Y. Chen, T.E. Tay, P.M. Baiz, S.T. Pinho, Numerical Analysis of Size Effects On Open Hole Tensile Composite. Composite Part A. 47 (2013) 52-62. DOİ:10.1016/j.compositesa.2012.12.001 [8] F.P. Van der Meer, L.J. Sluys, S.R. Hallet, M.R. Wisnom, Computational Modeling of Complex Failure Mechanisms in Laminates. Journal Of Composite Materials. 46 (2012) 603-623. DOI: 10.1177/0021998311410473 10.1016/j.compositesa.2009.02.021 [9] S.R. Hallet, B.G. Green, W.G. Jiang, M.R. Wisnom, An Experimental and Numerical Investigation into the Damage Mechanisms in Notched Composites. Composites Part A: Applied Science and Manufacturing. 40 (2009) 613-625. DOI:10.1016/j.compositesa.2009.02.021 [10] E. Abisset, F. Daghia, P. Ladevèze, On The Validation of a Damage Mesomodel for Laminated Composites by Means of Open-Hole Tensile Tests On Quasi-Isotropic Laminates. Composites: Part A. 42 (2011) 1515-1524. DOI:10.1016/j.compositesa.2011.07.004
  • [11] M. Yazıcı, H. Özer, İ.Karen, C. Torçuk, Mechanical Properties of 2D Cross-Ply E-Glass Fiber Reinforced Thermoplastic Laminated Composite Materials. Advances in Civil, Structural and Mechanical Engineering. (2016) 90-94. DOI: 10.15224/978-1-63248-093-4-77