The role of Lavandula sp. extract for effective inhibiting the mild steel corrosion in the hydrochloric acid solution

The role of Lavandula sp. extract for effective inhibiting the mild steel corrosion in the hydrochloric acid solution

The role of lavender extract in the present study is to examine the effect of inhibiting the corrosion of mild steel in the ambient conditions with its green and eco-friendly effect. It was determined the influence of inhibitor using electrochemical impedance spectroscopy (EIS) in different immersion times. From the EIS measurement results, it was observed that as the concentration of Lavandula extract in the HCl solution increased, the polarization resistance (Rp) values in the EIS diagram increased. Finally, scanning electron microscope (SEM) analysis was conducted to better clarify the surface inhibition of the electrode containing Lavandula sp. extract at the highest concentration, 0.500% (w/v), at the end of the 120 h immersion time. It has been observed that both the surface analysis and EIS findings are very compatible with each other.

___

  • 1. Şahin, M.; Çadırlı, E.; Sürme, Y.; Özkır, D. Thermo-Electrical Properties in Pb-Sb Hypereutectic Alloy, Met. Mater. Int. 2013, 19(3), 465-472.
  • 2. Berrissoul A., Ouarhach A., Benhiba F., Romane A., Zarrouk A., Guenbour A., Dikici B., Dafali A., Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach, J. Mol. Liq. 2020, 313, 113493.
  • 3. Loto C.A., Loto R.T., Effects of Lavandula and Ricinus Ϲommunis Oil as Inhibitors of Mild Steel Ϲorrosion in HCL and H2SO4 Media, Procedia Manuf. 2019, 35, 407–412.
  • 4. Loto C.A., Synergism of Saccharum Officinarum and Ananas Comusus Extract Additives on the Quality of Electroplated Zinc on Mild Steel, Res. Chem. Intermed. 2014, 40, 1799–1813.
  • 5. Aljuhani A., El-Sayed W.S., Sahu P.K., Rezki N., Aouad M.R., Salghi R., Messali M., Microwave-assisted synthesis of novel imidazolium, pyridinium and pyridazinium based ionic liquids and/or salts and prediction of physicochemical properties for their toxicity and antibacterial activity, J. Mol. Liq. 2018, 249, 747-753.
  • 6. Ameta G., Pathak A.K., Ameta C., Ameta R., Punjabi P.B., Sonochemical synthesis and characterization of imidazolium based ionic liquids: a green pathway, J. Mol. Liq. 2015, 211, 934-937.
  • 7. Abdel-Gaber A.M., Abd-El-Nabey B.A., Sidahmed I.M., El-Zayady A.M., Saadawy M., Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corros. Sci. 2006, 48, 2765-2779.
  • 8. Alibakhshi E., Ramezanzadeh M., Bahlakeh G., Ramezanzadeh B., Mahdavian M., Motamedi M., Glycyrrhiza glabra leaves extract as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution: experimental, molecular dynamics, Monte Carlo and quantum mechanics study, J. Mol. Liq. 2018, 255, 185-198.
  • 9. Benabbouha T., Siniti M., El Attari H., Chefira K., Chibi F., Nmila R., Rchid H., Red algae Halopitys incurvus extract as a green corrosion inhibitor of carbon steel in hydrochloric acid, J. Bio. Tribocorros. 2018, 4 (39), 1-9.
  • 10. Odewunmi N.A., Umoren S.A., Gasem Z.M., Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution, J. Environ. Chem. Eng. 2015, 3, 286–296.
  • 11. Mourya P., Banerjee S., Singh M.M., Corrosion inhibition of mild steel in acidic solution by Tagetes erecta (Marigold flower) extract as a green inhibitor, Corros. Sci. 2014, 85, 352–363.
  • 12. Halambek J., Berkovic´ K., Vorkapić-Furač J., The influence of Lavandula angustifolia L. oil on corrosion of Al-3Mg alloy, Corros. Sci. 2010, 52, 3978–3983.
  • 13. Abiola O.K., James A.O., The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution, Corros. Sci. 2010, 52, 661–664.
  • 14. Abdel-Gaber A.M., Khamis E., Abo-ElDahab H., Adeel S., Inhibition of aluminium corrosion in alkaline solutions using natural compound, Mater. Chem. Phys. 2008, 109, 297–305.
  • 15. Zerga B., Sfaira M., Rais Z., Touhami M.E., Taleb M., Hammouti B., Imelouane B., Elbachiri A., Lavender oil as an ecofriendly inhibitor for mild steel in 1 M HCl, Mater. et Tech. 2009, 97, 297–305.
  • 16. Schreiner M., Huyskens-Keil S., Phytochemicals in fruit and vegetables: health promotion and postharvest elicitors, Crit. Rev. Plant Sci. 2006, 25, 267–278.
  • 17. Alrefaee S.H., Rhee K.Y., Verma C., Quraishi M.A., Ebenso E.E., Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements, J. Mol. Liq. 2021, 321, 114666.
  • 18. Ji G., Shukla S.K., Dwivedi P., Sundaram S., Prakash R., Inhibitive effect of Argemone mexicana plant extract on acid corrosion of mild steel, Ind. Eng. Chem. Res. 2011, 50, 11954–11959.
  • 19. Krishnegowda P.M., Venkatesha V.T., Krishnegowda P.K.M., Shivayogiraju S.B., Acalypha torta leaf extract as green corrosion inhibitor for mild steel in hydrochloric acid solution, Ind. Eng. Chem. Res. 2013, 52, 722–728.
  • 20. Raja P.B., Fadaeinasab M., Qureshi A.K., Rahim A.A., Osman H., Litaudon M., Awang K., Evaluation of green corrosion inhibition by alkaloid extracts of Ochrosia oppositifolia and isoreserpiline against mild steel in 1 M HCl medium, Ind. Eng. Chem. Res. 2013, 52, 10582–10593.
  • 21. Oguzie E.E., Oguzie K.L., Akalezi C.O., Udeze I.O., Ogbulie J.N., Njoku V.O., Natural products for materials protection: Corrosion and microbial growth inhibition using Capsicum frutescens biomass extracts, ACS Sustain. Chem. Eng. 2013, 1, 214–225.
  • 22. Özkır, D. The Electrochemical Variation of a Kind of Protein Staining and Food Dye as a New Corrosion Inhibitor on Mild Steel in Acidic Medium. Int. J. Electrochem. 2019, 2019, 1–11.
  • 23. Özkır, D. A Newly Synthesized Schiff Base Derived from Condensation Reaction of 2,5-dichloroaniline and benzaldehyde: Its Applicability through Molecular Interaction on Mild Steel as an Acidic Corrosion Inhibitor by Using Electrochemical Techniques. J. Electrochem. Sci. Technol. 2019, 10(1), 37-54.
  • 24. Özkır, D.; Ezer, T. A New Inhibitor Approach to the Corrosion of Mild Steel in Acidic Solution with Long-Term Impedance Tests: A New Application Area for Hypnum cupressiforme (Bryophyta), Anatolian Bryology, 2020, 6(2), 119-128.
  • 25. Sürme, Y.; Gürten, A.A. Role of polyethylene glycol tert-octylphenyl ether on corrosion behaviour of mild steel in acidic solution, Corros. Eng. Sci. Techn. 2009, 44(4), 304-311.
  • 26. Özkır, D; Kayakırılmaz, K. The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel, J. Electrochem. Sci. Technol. 2020, 11(3), 257-272.
  • 27. Özkır, D.; Bayol, E.; Gürten, A.A.; Sürme, Y., Kandemirli, F. Effect of hyamine on electrochemical behaviour of brass alloy in HNO3 solution, Chem. Pap. 2013, 67(2), 202-212.
  • 28. Kılınççeker, G.; Baş, M.; Zarifi, F.; Sayın, K. Experimental and Computational Investigation for (E)-2-hydroxy-5-(2- benzylidene) Aminobenzoic Acid Schiff Base as a Corrosion Inhibitor for Copper in Acidic Media, Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 515-527.
  • 29. Ongun Yüce, A.; Telli, E.; Doğru Mert, B.; Kardaş, G.; Yazıcı, B. Experimental and quantum chemical studies on corrosion inhibitioneffect of 5,5 diphenyl 2-thiohydantoin on mild steel in HCl solution, J. Mol. Liq. 2016, 218, 384-392.
  • 30. Yildiz, R.; Dogru Mert, B. Theoretical and experimental investigations on corrosion control of mild steel in hydrochloric acid solution by 4-aminothiophenol, Anti-Corros. Method. M. 2019, 66(1),127-137.
  • 31. Palaniappan, N.; Cole, I.; Caballero-Briones, F.; Manickam, S.; Thomas, K.J.; Santos, D. Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium, RSC Adv. 2020, 10, 5399–5411.
  • 32. Buchweishaija J. Phytochemicals as green corrosion inhibitors in various corrosive media: A review, Tanz. J. Sci. 2009, 35, 77-92.
  • 33. Keleş, H.; Keleş, M.; Sayın, K. Experimental and theoretical investigation of inhibition behavior of 2-((4-(dimethylamino)benzylidene)amino)benzenethiol for carbon steel in HCl solution, Corros. Sci. 2021, 184, 109376.
International Journal of Chemistry and Technology-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2017
  • Yayıncı: İbrahim DEMİRTAŞ
Sayıdaki Diğer Makaleler

Comparison of chemical composition and nutritive values of some clover species

İbrahim ERTEKİN

Biodegradation of chlorpyrifos by bacterial genus pseudomonas putida

Yakup CUCİ, Sait ÇELİK

Production of organic light-emitting diode with fluorescence featured quinoline derivative

Mustafa DOĞAN, Ümit ERDEM, Salih ÖKTEN

Structural and spectral properties of 4-(4-(1-(4-Hydroxyphenyl)-1-phenylethyl)phenoxy)phthalonitrile: Analysis by TD-DFT method, ADME analysis and docking studies

Kenan ALTUN, Ümit YILDIKO, Aslıhan Aycan TANRIVERDİ, İsmail ÇAKMAK

Synthesis, spectral characterization, DFT, and molecular docking studies of 2 - ((2,3-Dihydrobenzo [b] [1,4] dioxin-6-yl) (1H-indol-1-yl) methyl) phenol compound

Yeliz ULAŞ

İran safranı (Crocus sativus L.) ile Türkiye'nin makro ve mikro lokasyonlarda yetiştirilen safranın kalite özelliklerinin karşılaştırılması

Hasan ASİL, Ersen GÖKTÜRK

Variation of components in laurel (Laurus nobilis L.) fixed oil extracted by different methods

Musa TÜRKMEN, Oğuzhan KOÇER

Resorcinol derivatives as human acetylcholinesterase inhibitor: An In Vitro and In Silico study

Uğur GÜLLER

A novel nicotinoyl thiourea manganese complex: synthesis, characterization, and biological activity studies

Fatma Betül ÖZGERİŞ, Merve YILDIRIM, Arzu GÖRMEZ, Bünyamin ÖZGERİŞ

Antioxidant activity of silver nanoparticles synthesized from Tagetes erecta L. leaves

Ramazan ERENLER, Esma Nur GEÇER, Nusret GENÇ, Dürdane YANAR