Quality and composition of lipids used in biodiesel production and methods of transesterification: A review

Quality and composition of lipids used in biodiesel production and methods of transesterification: A review

This study presents a brief overview of the composition and properties of various oils used in biodiesel production and the alkali, acidic and enzymatic transesterification reactions used in production. Nowadays, vegetable and microalgae oils are mostly used in biodiesel production. Recently, however, animal fats, processed oils, industrial oils and yeast and bacterial oils have also gained importance. Although all fats and oils are roughly similar, their saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), free fatty acids (FFA), cholesterol or glycerol contents may be different and affect the production and efficiency of the biodiesel. Triglycerides are the most significant lipids in biodiesel production. Triglycerides in vegetable oils dominantly contain C18:1ω9 and C18:2ω6 fatty acids. Whereas, triglycerides in animal fats mostly include C16:0 and C18:1ω9 fatty acids. Microalgae are rich in long-chain fatty acids such as C20 and C22. Also, fatty acids such as C14:0, C16:1ω7, C18:0, C20:0, C22:0, C24:0, C22:1ω9, C18:3ω6, C20:4ω6 and C20:5ω6 are present in oils and fats. However, their proportions change from feedstock to feedstock. Rendered animal-originated fats include larger quantities of FFA than waste vegetable oils and, as known, excessive amounts of FFA generate soap in reactions with the alkaline catalyst, reducing biodiesel efficiency. For this reason, generally vegetable and microalgal oils containing a large number of triglycerides and less FFA are preferred for biodiesel production. Bacteria can synthesize branched fatty acids. It has been reported that biodiesel produced from branched fatty acids has advantages according to biodiesel produced from other lipids. Consequently, the use of correct and reliable lipids in biodiesel production is very important for the quality of fuel.

___

  • 1. Fazal, M. A.; Haseeb, A. S. M. A.; Masjuki, H. H. Renew. Sustain. Energy Rev. 2011, 15(2), 1314-1324.
  • 2. Refaat, A. A. Int. J. Environ. Sci.Technol. 2009, 6, 677-694.
  • 3. Lam, M. K.; Lee, K. T.; Mohamed, A. R. Biotechnol. Adv. 2010, 28(4), 500-518.
  • 4. Lapuerta, M.; Armas, O.; Rodríguez-Fernández, J. Prog. Energy Combust. Sci. 2008, 34, 198-223.
  • 5. Balat, M.; Balat, H. Appl. Energy 2010, 87(6), 1815-1835.
  • 6. Moser, B. R Energy Fuels 2008, 22, 4301-4306.
  • 7. Encinar, J.M.; Sánchez, N.; Martínez, G.; García, L. Bioresour. Technol. 2011, 102(23), 10907-10914.
  • 8. Atabani, A. E.; Silitonga, A. S.; Badruddin, I. A.; Mahlia, T. M. I.; Masjuki, H. H.; Mekhilef, S. Renew. Sustain. Energy Rev. 2012, 16, 2070-2093.
  • 9. Gui, M. M.; Lee, K. T.; Bhatia, S. Energy 2008, 33, 1646-1653.
  • 10. Sharma, Y. C.; Singh, B.; Upadhyay, S. N. Fuel 2008, 87, 2355-2373.
  • 11. Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F. Biotechnol. Adv. 2010, 28, 628-634.
  • 12. Dias, J. M.; Alvim-Ferraz. M. C. M.; Almeida, M. F.; Diaz, J. D. M.; Polo, M. S.; Utrilla, J. R. Fuel 2012, 94, 418-425.
  • 13. Meng, X.; Chen, G.; Wang, Y. Fuel Proces. Technol. 2008, 89, 851-857.
  • 14. Tong, D.; Hu, C.; Jiang, K.; Li, Y. J. Am. Oil Chem.’ Soc. 2011, 88, 415-423.
  • 15. Lebedevas, S.; Vaicekauskas, A.; Lebedeva, G.; Makareviciene, V.; Janulis, P.; Kazancev, K. Energy Fuels 2006, 20, 2274-2280.
  • 16. Sendzikiene, E.; Makareviciene, V.; Janulis, P. Pol. J. Environ. Stud. 2005, 14, 335-339.
  • 17. Hemmat, Y.; Ghobadian, B.; Loghavi, M.; Kamgar, S.; Fayyazi, E. Int. Res. J. Appl. Bas. Sci. 2013, 5(1), 84-91.
  • 18. Refaat, A. A. Int. J. Environ. Sci. Technol. 2010, 7(1), 183-213.
  • 19. Pimentel, D.; Marklein, A.; Toth, M. A.; Karpoff, M. N.; Paul, G. S.; McCormack, R.; Kyriazis, J.; Krueger, T. Hum. Ecol. 2009, 37, 1-12.
  • 20. Ahmia, A. C.; Danane, F.; Bessah, R.; Boumesbah, I.Rev. Energ. Renouv. 2014, 17 (2), 335-343.
  • 21. Barnwal, B. K.; Sharma, M. P Renew. Sustain.Energy Rev. 2005, 9, 363-378.
  • 22. Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P. J. Nutr. Rev. 2013, 71(6), 370-385.
  • 23. Rostagno, H. S.; Albino, L. F. T.; Donzele, J. L.; Gomes, P. C.; Oliveira, R. F.; Lopes, D. C.; Ferreira, A. S.; Barreto, S. L. T.; Euclides,R. F. Food Composition and Nutritional Requirements. In: Brazilian tables for poultry and swine: Viçosa Federal University, Viçosa, MG, Brazil, 2011. pp. 252.
  • 24. Dhiraj, S. D.; Mangesh, M. D. Int. J. Emerg. Technol. Adv. Eng. 2012, 2(10), 179-185.
  • 25. List, G. R.; Emken, E. A.; Kwolek, W. F.; Simpson, T. D.; Dutton, H. J. J. Am. Oil Chem.’Soc. 1977, 54, 408-413.
  • 26. Tan, B. K.; Oh, F. C. H. PORIM Technol. 1981, 4, 1-6.
  • 27. Leung, D. Y. C.; Wu, X.; Leung, M. K. H. Appl. Energy 2010, 87(4), 1083-1095.
  • 28. Azam, M. M.; Waris, A.; Nahar, N. Biomass Bioenerg. 2005, 29(4), 293-302.
  • 29. Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G .App. Energy 2010, 87, 38-46.
  • 30. Demirbas A. Energy Conver. Manag. 2002, 43, 2349-2356.
  • 31. Shereena, K. M.; Thangaraj, T. Electron. J. Biol. 2009, 5(3), 67-74.
  • 32. Al-Zuhair, S.; Hussein, A.; Al-Marzouqi, A. H.; Hashim, I. Biochem. Eng. J. 2012, 60, 106-110.
  • 33. Tickell, J. Biodiesel America: How to achieve energy security, Free America from Middle-east oil dependence and make money growing fuel. Yorkshire Press, USA, 2006.
  • 34. Kerihuel, A.; Kumar, M. S.; Bellettre, J.; Tazerout, M. Fuel 2006, 85(17-18), 2371-2684.
  • 35. Ma, F.; Clements, L. D.; Hanna, M. A. Trans. Am. Soc. Agric. Eng.1998, 41, 1261-1264.
  • 36. Canakci, M.; Monyem, A.; Gerpen, J. V. Trans. ASAE. 1999, 42, 1565-1572.
  • 37. Nelson, L. A.; Foglia, T. A.; Marmer, W. N. J. Am. Oil Chem.’ Soc. 1996, 73, 1991-1994.
  • 38. Yang, T.; Xu, X.; He, C.; Li, L. Food Chem. 2003, 80, 473-481.
  • 39. Pacheco, J. W. Guia técnico ambiental de frigoríficos - industrialização de carnes (Bovina e suína). São Paulo, Brazil, CETESB (Série P + L), 2008.
  • 40. Balcao, V. M.; Malcata, F. X. Biotechnol. Adv. 1998, 16, 309-341.
  • 41. Dias, J. M.; Alvim-Ferraz, M. C. M.; Almeida, M. F. Energy Fuel 2008, 22, 3889-3893.
  • 42. Mutanda, T.; Ramesh, D.; Karthikeyan, S.; Kumari, S.; Anandraj, A.; Bux, F. Biores. Technol. 2011, 102, 57-70.
  • 43. Chisti, Y. Biotechnol. Adv. 2007, 25(3), 294-306.
  • 44. Xue, F.; Zhang, X.; Luo, H.; Tan, T. Proc. Biochem. 2006, 4, 1699-1702.
  • 45. Metting, B.; Pyne, J. W. Enzyme Microb. Technol. 1986, 8, 386-394.
  • 46. Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. J. Biosci. Bioeng. 2006, 101, 87-96.
  • 47. Halim, R.; Danquah, M. K.; Webley, P. A. Biotechnol. Adv. 2012, 30, 709-732.
  • 48. Schenk, P. M.; Thomas-Hall, S. R.; Stephens, E.; Marx, U. C.; Mussgnug, J. H.;Posten, C.; Kruse, O.; Hankamer, B. BioEnergy Res. 2008, 1, 20-43.
  • 49. Becker, E. W. Biotechnol. Adv. 2007, 25, 207-210.
  • 50. Ratledge, C. Trends Biotechnol. 1993, 11, 278-284.
  • 51. Ratledge, C.; Wynn, J. P. Adv. Appl. Microbiol. 2002, 51, 1-51.
  • 52. Belarbi, E. H.; Molina, E.; Chisti, Y. Enzyme Microb.Technol. 2000, 26, 516-529.
  • 53. Becker, E. W. Microalgae: Biotechnology and microbiology. Cambridge University Press, New York: 1994, pp 293.
  • 54. Aach, H. G. Arch. Mikrobiol. 1952, 17, 213-246.
  • 55. Zhila, N. O.; Kalacheva, G. S.; Volova, T. G. Botryococcus braunii Kutz IPPAS H-252. Russ. J. Plant Physiol. 2005, 52, 357-365.
  • 56. Talebi, A. F.; Mohtashami, S. K.; Tabatabaei, M.; Tohidfar, M.; Bagheri-Zeinalabedini, M.; Hadavand-
  • Mirzaei, H.; Mirzajanzadeh, M.; Shafaroudi, S. M.; Bakhtiari, S. Algal Res. 2013, 2, 258-267.
  • 57. Chen, L.; Liu, T.; Zhang, W.; Chen, X.; Wang, J. Bioresour. Technol. 2012, 111, 208-214.
  • 58. Halim, R.; Gladman, B.; Danquah, M. K.; Webley, P. A. Bioresour. Technol. 2011, 102, 178-185.
  • 59. Yu, X.; Zhao, P.; He, C.; Li, J.; Tang, X.; Zhou, J.; Huang, Z. Bioresour. Technol. 2012, 121, 256-262.
  • 60. Levine, R. B.; Costanza-Robinson, M. S.; Spatafora, G. A. Biomass Bioenergy.2011, 35, 40-49.
  • 61. Song, M.; Pei, H.; Hu, W.; Ma, G. Bioresour. Technol. 2013, 141, 245-251.
  • 62. Carlos, A.; Guerrero, F.; Guerrero-Romero, A.; Fabio, E. Sierra. Biodiesel Production from Waste Cooking Oil,In: Biodiesel–Feedstocks and Processing Technologies;Margarita Stoytcheva and Gisela,Eds.; Intech Open Acces Publsher: Montero, 2011; .pp.23-44.
  • 63. Tsukii, M.; Nakamori, H.; Hirano, K. J. Japan Inst. Energy2008, 87, 291-296.
  • 64. Canakci, M. Bioresour. Technol. 2007, 98, 1167-1175.
  • 65. Canakci, M.; Gerpen, J. V. Trans. ASAE, 1999, 42(5), 1203-1210.
  • 66. Rude, M. A.; Schirmer, A. Curr. Opin. Microbiol. 2009, 12, 274-281.
  • 67. Kosa, M.; Ragauskas, A. J. Trends Biotechnol. 2011, 29, 53-60.
  • 68. Muller, E. E. L.; Sheik, A. R.; Wilmes, P. Curr. Opin. Biotechnol. 2014, 30, 9-16.
  • 69. Liu, X.; Sheng, J.; Curtis, R. Proc. Natl. Acad. Sci. 2011, 108, 6899-6904.
  • 70. Gohel, H.R.; Ghosh, S.K.; Braganza, V.J. Int. J. Renew. Energy Res. 2013, 3(1), 126-131.
  • 71. Hetzler, S.; Steinbüchel, A. Appl. Environ. Microbiol. 2013, 79, 3122-3125.
  • 72. Alvarez, H. M.; Mayer, F.; Fabritius, D.; Steinbüchel, A. Arch. Microbiol. 1996, 165, 377-386.
  • 73. Olukoshi, E. R.; Packter, N. M. Microbiol-SGM, 1994, 140, 931-943.
  • 74. Röttig, A.; Wenning, L.; Bröker, D.; Steinbüchel, A. Appl. Microbiol. Biotechnol. 2010, 85, 1713-1733.
  • 75. Kalscheuer, R.; Stölting, T.; Steinbüchel, A. Microbiol-SGM, 2006, 152, 2529-2536.
  • 76. Steen, E. J.; Kang, Y.; Bokinsky, G.; Hu, Z.; Schirmer, A.; McClure, A.; Del-Cardayre, S. B.; Keasling, J. D. Nature 2010, 463, 559-562.
  • 77. Tao, H.; Guo, D.; Zhang, Y.; Deng, Z.; Liu, T. Biotechnol. Biofuel. 2015, 8, 92-103.
  • 78. Salis, A.; Pinna, M.; Monduzzi, M.; Solinas, V. J. Biotechnol. 2005, 119, 291-299.
  • 79. Helwani, Z.; Othman, M. R.; Aziz, N.; Fernando, W. J. N.; Kim, J. Fuel Proces. Technol. 2009, 90(12), 1502-1514.
  • 80. Vasudevan, P. T.; Fu, B. Waste Biomass Valori. 2010, 35(5), 421-430.
  • 81. Atadashi, I. M.; Aroua, M. K.; Aziz, A. Renew. Sust. Energy Rev. 2010, 14 (7), 1999-2008.
  • 82. Marchetti, J. M.; Miguel, V. U.; Errazu, A. F. Fuel Proces. Technol. 2008, 89, 740-748.
  • 83. Fukuda, H.; Kondo, A.; Noda, H. J. Biosci.Bioeng. 2001, 92, 405-416.
  • 84. Freedman B, Pryde E .H. Mounts, T. L. J. Am. Oil Chem.’ Soc.1984, 61, 1638-1643.
  • 85. Kusdiana, D.; Saka, S. Fuel 2001, 80, 693-698.
  • 86. Silas, K.; Kwaji, H. B.; Gutti, B. Int. J. Recent Res. Phys. Chem. Sci.2015, 2 (1), 26-37.
  • 87. Thanh, L. T.; Kenji, O.; Luu, V.; Yasuaki, M. Catalysts2012, 2, 191-222.
  • 88. Ito, T.; Sakurai, Y.; Kakuta, Y.; Sugano, M.; Hirano, K. Fuel Proces. Technol. 2012, 94, 47-52.
  • 89. Salvi, B. L.; Panwar, N. L. Renew. Sust. Energy Rev. 2012, 16, 3680-3689.
  • 90. Ejikeme, P. M.; Anyaogu, I. D.; Ejikeme, C. L.; Nwafor, N. P.; Egbuonu, C. A. C.; Ukogu, K.; Ibemesi, J. A. E-J. Chem. 2010, 7 (4), 1120-1132.
  • 91. Freedman, B.; Butterfield, R. O.; Pryde, E. H. J. Am. Oil Chem.’ Soc. 1986, 63, 1375-1380.
  • 92. Akoh, C. C.; Chang, S.; Lee, G.; Shaw, J. J. Agric. Food Chem. 2007, 55, 8995-9005.
  • 93. Fjerbaek, L.; Christensen, K. V.; Norddahl, B. Biotechnol. Bioeng. 2009, 102, 1298-1315.
  • 94. Vasudevan, P. T.; Briggs, M. J. Ind. Microbiol. Biotechnol. 2008, 35, 421-430.
  • 95. Robles-Medina, A.; Gonzalez-Moreno, P. A.; Esteban-Cerdán, L.; Molina-Grima, E. Biotechnol. Adv. 2009, 27, 398-408.
  • 96. Jeong, G. T.; Park, D. H. Appl. Biochem. Biotechnol. 2008, 14, 8131-8139.
  • 97. Qin, H.; Yan, X.; Dong, W. Chinese J. Catal. 2008, 29, 41-46.
  • 98. Tamalampudi, S.; Talukder, R. M.; Hamad, S.; Numatab, T.; Kondo, A. Biochem. Eng. J. 2008, 39, 185-189.