A corrosion study: Use of Thionine dye having structurally metachromatic influence

A corrosion study: Use of Thionine dye having structurally metachromatic influence

In the present study, it was examined the inhibition performance of Thionine, which has metachromatic properties and is generally used as a vital dye for different staining of nucleus and cytoplasm, on mild steel in acidic medium as a different application area which is not existed in the literature. In order to understand how Thionine interacts with the mild steel surface, different types of adsorption isotherms were plotted and it was seen obeyed the Langmuir isotherm. The test results revealed that as the inhibitor concentration increased at each temperature, the corrosion current density (icorr) values diminished and accordingly, the inhibition efficiencies (η%) increased slightly. The results indicated that the Thionine molecules continued to be adsorbed onto the metal surface to some extent, even when elevated to high temperatures. Thermodynamic adsorption parameters revealed a strong and chemical interaction between Thionine and mild steel. It was determined that the Thionine acted as a mixed-type inhibitor on the mild steel surface. Finally, field emission scanning electron (FESEM) and atomic force microscopy (AFM) analyses were performed to determine the surface characteristics.

___

  • 1.https://nptel.ac.in/courses/113106032/16%20-%20Properties%20and%20Applications%20of%20Materials.pdf (Retrieved December 17, 2018).
  • 2. Vitos, L.; Zhang, H.L.; Lu, S.; Al-Zoubi, N.; Johansson, B.; Nurmi, E.; Ropo, M.; Punkkinen, M.P.J.; Kokko, K. Alloy Steel: Properties and Use First-Principles Quantum Mechanical Approach to Stainless Steel Alloys. In. Morales E.V. (Eds). Croatia, Intech Open Access Publisher, 2011, Chap 1.
  • 3. The Balance, Steel Grades and Properties. What Are the Different Types of Steel? Adres: https://www.thebalance.com/steel-grades-2340174 (Retrieved December 17, 2018).
  • 4. El-raouf, M.A.; El-Azabawy, O.E.; El-Azabawy, R.E. Egypt. J. Pet. 2015, 24, 233–239.
  • 5. Gong, W.; Yin, X.; Liu, Y.; Chen, Y.; Yang, W. Prog.Org. Coat. 2019, 126, 150–161.
  • 6. Asaad, M.A.; Ismail, M.; Tahir, M.Md.; Huseien, G.F.; Raja, P.B.; Asmara, Y.P. Constr. Build. Mater. 2018, 188, 555–568.
  • 7. Al-Amierya, A.A.; Ahmed, M.H.O.; Abdullah, T.A.; Gaaz, T.S.; Kadhum, A.A.H. Results Phys. 2018, 9, 978–981.
  • 8. Javadian, S.; Darbasizadeh, B.; Yousefi, A.; Ektefa, F.; Dalir Jamal Kakemam, N. J. Taiwan Ins. Chem. Engin. 2017, 71, 344–354.
  • 9. Palanisamy, K.; Kannan, P.; Sekar, A. Surf. Interfaces, 2018, 12, 50–60.
  • 10. Madkour, L.H.; Kaya, S.; Kaya, C.; Guo, L. J. Taiwan Inst. Chem. E. 2016, 68, 461–480.
  • 11. Pareek, S.; Jain, D.; Hussain, S.; Biswas, A.; Shrivastava, R.; Parida, S.K.; Kisan, H.K.; Lgaz, H.; Chung, Ill-Min,; Behera, D. Chem. Eng. J. 2019, 358, 725–742.
  • 12. Madkour, L.H.; Kaya, S.; Guo, L.; Kaya, C. J. Mol. Struct. 2018, 1163, 397–417.
  • 13. El Nemr, A.; Moneer, A.A.; Khaled, A.; El Sikaily, A.; El-Said, G.F. Mater. Chem. Phys. 2014, 144, 139–154.
  • 14. Singh, A.; Lin, Y.; Liu, W.; Yu, S.; Pan, J.; Ren, C.; Kuanhai, D. J. Ind. Eng. Chem. 2014, 20, 4276–4285.
  • 15. Chen, B.Y.; Xu, B.; Yueh, P.L.; Han, K.; Qin, L.J.; Hsueh, C.C. J. Taiwan Ins. Chem. Engin. 2015, 51, 63–70.
  • 16. Ho, P.I.; Kumar, G.G.; Kim, A.R.; Kim, P.; Nahm, K.S. Bioelectrochemistry, 2011, 80, 99–104.
  • 17. Ackroyd, W. Chem. News 1876, 33, 60.
  • 18. Ehrlich, P.; Arch. Anat. Physiol. 1879, 36, 166–169.
  • 19. Pradeep D’mello, A.X.; Sylvester, T.V.; Ramya, V.; Britto, F.P.; Shetty, P.K.; Jasphin, S. Int. J. Adv. Health Sci. 2016, 2-10, 12–17.
  • 20. Khayyat, S.A.; Akhtar, M.S.; Umar, A.; Mater. Lett. 2012, 81, 239–241.
  • 21. Rahimnejad, M.; Najafpour, G.D.; Ghoreyshi, A.A.; Shakeri, M.; Zare, H. Int. J. Hydrogen Energ. 2011, 36, 13335–13341.
  • 22. Umoren, S.A.; AlAhmary, A.A.; Gasem, Z.M.; Solomon, M.M. Int. J. Biol. Macromol. 2018, 117, 1017–1028.
  • 23. Tasić, Ž.Z.; Petrović Mihajlović, M.B.; Radovanović, M.B.; Simonović, A.T.; Antonijević, M.M. J. Mol. Struct. 2018, doi: 10.1016/j.molstruc.2018.01.031.
  • 24. Solmaz, R. Corros. Sci. 2014, 79, 169–176.
  • 25. Özkır, D.; Kayakırılmaz, K.; Bayol, E.; Gürten, A.A.; Kandemirli, F. Corros. Sci. 2012, 56, 143–152.
  • 26. Chauhan, D.S.; Ansari, K.R.; Sorour, A.A.; Quraishi, M.A.; Lgaz, H.; Salghi, R. Int. J. Biol. Macromol. 2018, 107, 1747–1757.
  • 27. Özkır, D. J. Electrochem. Sci. Technol. 2019, 10 (1), 37–54.
  • 28. Özkır, D. OHU J. Eng. Sci. 2018, 7(2), 993–1003.
  • 29. Wysocka, J.; Cieslik, M.; Krakowiak, S.; Ryl, J. Electrochim. Acta 2018, 289, 175–192.
  • 30. Obot, I.B.; Obi-Egbedi, N.O.; Umoren, S.A. Corros. Sci. 2009, 51, 276–282.
  • 31. Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. Corros. Sci. 2003, 45, 33–58.
  • 32. Noor, E.A. and Al-Moubaraki, A.H. Mater. Chem. Phys. 2008, 110, 145–154.
  • 33. Singh, D.K.; Ebenso, E.E.; Singh, M.K.; Behera, D.; Udayabhanu, G.; John, R.P. J. Mol. Liq. 2018, 250, 88–99.