Numerical Analysis of Variable Morphing Wing for Improved Aerodynamic Performance of a Predator MQ-1B
Numerical Analysis of Variable Morphing Wing for Improved Aerodynamic Performance of a Predator MQ-1B
In this paper, aerodynamic performance benefits of morphing unmanned aerial vehicle’s wing concepts are investigated. A Predator MQ-1B with variable wing structure was utilized for this study. The concept consists of variable twist (-10°
___
- Abdulrahim, M. et al. (2005) ‘Flight Testing A Micro Air Vehicle Using Morphing For Aeroservoelastic Control’, Journal of Aircraft, 42, No 1(January-February), pp. 1–17. doi:10.2514/6.2004-1674.
- AIRBUS (2020) AlbatrossOne: A revolutionary approach to aircraft wing design. Available at: https://www.airbus.com/innovation/future-concepts/biomimicry/albatross one .html (Accessed: 9 July 2021).
- Austin, R. (2010) Unmanned Aircraft Systems – UAVs design, development and deployment. Aerospace series, Wiley and Sons Ltd publication.
- Barbarino, S. et al. (2011) ‘A Review of Morphing Aircraft’, Journal of Intelligent Material Systems and Structures, 22(9), pp. 823–877. doi:10.1177/1045389X11414084.
- Barbarino, S. et al. (2014) ‘A review on shape memory alloys with applications to morphing aircraft’, Smart Materials and Structures, 23(6), pp. 063001--. doi:10.1088/0964-1726/23/6/063001.
- Bourdin, P., Gatto, A.. and Friswell, M. (2006) ‘The Application of Variable Cant Angle Winglets for Morphing Aircraft Control’, in 24th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, Inc, pp. 1–13.
- Bourdin, P., Gatto, A. and Friswell, M.I. (2007) ‘Potential of Articulated Split Wingtips for Morphing-Based Control of a Flying Wing’, in 25th AIAA Applied Aerodynamics Conference, pp. 1–16.
- Culick, F.E.C. (2003) ‘The Wright Brothers : First Aeronautical Engineers’, 41(6), pp. 8–11.
- Falcao, L., Gomes, A. a and Suleman, A. (2011) ‘Design and Analysis of an Adaptive Wingtip’, in 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado: AIAA.
- Force., D. of A. (2009) ‘Airfield Planning and Design Criteria for Unmanned Aircraft Systems (UAS)’, 4, pp. 1–51.
- Galantai, V.P. (2010) ‘Design and Analysis of Morphing Wing for Unmanned Aerial Vehicles‘, University of Toronto, Canada
- Gandhi, F. and Anusonti-Inthra, P. (2008) ‘Skin design studies for variable camber morphing airfoils’, Smart Materials and Structures, 17(1), p. 015025. doi:10.1088/0964-1726/17/01/015025.
- Gomez, J.C. and Garcia, E. (2011) ‘Morphing unmanned aerial vehicles’, Smart Materials and Structures, 20(10), p. 103001. doi:10.1088/0964-1726/20/10/103001.
- Guerrero, J.E., Sanguineti, M., and Wittkowski, K. (2020) ‘Variable cant angle winglets for improvement of aircraft flight performance.’ Meccanica 55, 1917–1947.
- Gundlach, J. (2012) ‘Overview of Unmanned Aircraft Systems’, Designing Unmanned Aircraft Systems, 2(4), pp. 1–23. doi:10.2514/5.9781600868443.0001.0023.
- Jha, A.K. and Kudva, J.N. (2004) ‘Morphing Aircraft Concepts, Classifications, and Challanges’. Edited by E.H. Anderson, 5388, pp. 213–224. doi:10.1117/12.544212.
- Kaygan, A., Gatto, E. (2018) ‘Structural Analysis of an Active Morphing Wing for Enhancing Unmanned Aerial Vehicle Performance’, International Journal of Aerospace and Mechanical Engineering, 12(10), pp. 948–955.
- Kaygan, E. and Gatto, A. (2014) ‘Investigation of Adaptable Winglets for Improved UAV Control and Performance’, International journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 8(7), pp. 1281–1286.
- Kaygan, E. and Gatto, A. (2015) ‘Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance’, International Journal of Aerospace and Mechanical Engineering, 9(7), pp. 1127–1133.
- Kaygan, E. and Gatto, A. (2016) ‘Development of an Active Morphing Wing With Adaptive Skin for Enhanced Aircraft Control and Performance’, in Greener Aviation 2016. BRUSSELS, BELGIUM.
- Kaygan E., Ulusoy C. (2018), ‘Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft‘, Journal of Aviation, 2 (2), 77-87. DOI: 10.30518/jav.482507
- Kaygan E. (2020), ‘Aerodynamic Analysis of Morphing Winglets for Improved Commercial Aircraft Performance‘, J. Aviat.4 (1), 31-44.
King, B., Woods, S. and Friswell, M.I, (2015) ‘The Adaptive Aspect Ratio Morphing Wing: Design Concept and Low Fidelity Skin Optimization’, pp. 1–4.
- Kudva, J. N., Martin, C. A., Scherer, L. B., Jardine, A. P., McGowan, A. R., Lake, R. C., Sendeckyj, G. P., and Sanders, B.P. (1997) ‘Overview of DARPA/AFRL/NASA Smart Wing Program’, in Jacobs, J.H. (ed.). Bellingham, WA: SPIE Proceedings, pp. 230–236.
- Kudva, J.N. (2004) ‘Overview of the DARPA Smart Wing Project’, Journal of Intelligent Materials Systems and Structures, 15(4), pp. 261–267. doi:10.1177/1045389X04042796.
- McRuer, D. and Graham, D. (2004) ‘Flight Control Century: Triumphs of the Systems Approach’, Journal of Guidance, Control, and Dynamics, 27(2), pp. 161–173. doi:10.2514/1.4586.
- Min, Z., Kien, V.K. and Richard, L.J.Y. (2010) ‘Aircraft morphing wing concepts with radical geometry change’, IES Journal Part A: Civil and Structural Engineering, 3(3), pp. 188–195. doi:10.1080/19373261003607972.
- Olympio, K.R. et al. (2010) ‘Design of a Flexible Skin for a Shear Morphing Wing’, Journal of Intelligent Material Systems and Structures, 21(17), pp. 1755–1770. doi:10.1177/1045389X10382586.
- Phillips, W.F. (2004) ‘Lifting-Line Analysis for Twisted Wings and Washout-Optimized Wings. ‘ Journal of Aircraft vol. 41, no. 1 128-136.
- Predator, M.-1 (2015) MQ-1 Predator Air Force Photos. Available at: https://www.af.mil/News/Photos/igphoto/2000597903/mediaid/4705/ (Accessed: 16 June 2021).
- Prisacariu, V., Boscoianu, M. and Cîrciu, I. (2013) ‘Morphing wing concept for small UAV’, Applied Mechanics and Materials, 332(July), pp. 44–49. doi:10.4028/www.scientific.net/AMM.332.44.
- Prisacariu, V., Boşcoianu, M. and Cîrciu, I. (2017) ‘The effect analysis of the morphing concept on the small swept flying wings’, MATEC Web of Conferences, 121, pp. 1–8. doi:10.1051/matecconf/201712101011.
- Babigian R., Hayashibara,S. (2009), ‘Computational Study of the Vortex Wake Generated by a Three-Dimensional Wing with Dihedral, Taper, and Sweep‘, 27th AIAA Applied Aerodynamics Conference, no. June, pp. 1–13.
- Saffman, P. G.(1992) ‘Vortex Dynamics‘ Cambridge. England, U.K.: Cambridge Univ. Press.
- Smith, D. D., Lowenberg,M. H., Jones, D. P., Friswell, M. I. and Park, S. (2012) ‘Computational and Experimental Analysis of the Active Morphing Wing Concept‘, 2012, pp. 1–9.
- Thill, C. et al. (2008) ‘Morphing skins’, (3216), pp. 1–23.
- Weisshaar, T. a. (2013) ‘Morphing Aircraft Systems: Historical Perspectives and Future Challenges’, Journal of Aircraft, 50(2), pp. 337–353. doi:10.2514/1.C031456.
- Weisshaar, T.A. and Challenge, T.H.E.M. (2006) ‘Morphing Aircraft Technology – New Shapes for Aircraft Design’.
- Ying Shan et al. (2008) ‘Variable Stiffness Structures Utilizing Fluidic Flexible Matrix Composites’, Journal of Intelligent Material Systems and Structures, 20(4), pp. 443–456. doi:10.1177/1045389X08095270.