TIG Eritilmiş Yüzey Otomotiv Silindir Liner Uygulaması Titanyum Alaşım Modifiye

Fe-bazlı alaşım tungsten tesirsiz gaz (TIG), yüzey modifikasyonu aşınma ve metalik bileşeni malzeme aşınmasına karşı koruma sağlayabilir. Bu çalışmada, bir girişim aşınma substratın direncini geliştirmek için TIG torç eritme işlemi ile Ticari saflıkta bir titanyum (CP-Ti) ile ilgili tozlar önceden yerleştirilmiş Fe-C-Si çökelmesini keşfetmek için yapılmıştır. Üç farklı toz 97Fe2C1Si nominal bileşimi ile harmanlayarak, 94Fe 4C2Si ve 91Fe6C3Si ayrı geleneksel 100 A üretilen TIG kaynak meşale ve enerji girişi 1350 J / mm kullanılarak CP-Ti erimiş bulundu. Sonuçların analizi TIG meşale alt tabaka ile iyi metalurjik bağ ile erime havuzlar geometri ürettiğini gösterdi. Eriyik mikro farklı TiC çökeltilerin oluşuyordu. Gözenekler bariz yüksek karbon içeriği (94Fe 4C2Si) ile yüzey modifikasyonu sonrasında eriyik mikro görüldü. Hem mikrosertlik ve aşınma özelliği özellikle 94Fe4C2Si ile TIG kaplama sonrası önemli bir gelişme gösterdi. Bu nedenle, Fe-C-Si, optimize edilmiş bir bileşim olup aşınma direncini kontrol etmek için iyi bir bileşim ve silindirik astar uygulanması için TIG erimesi altında 94Fe4C2Si ile toz önceden yerleştirilmiş olduğu görülmektedir.

TIG Melted Surface Modified Titanium Alloy for Automotive Cylinder Liner Application

Tungsten inert gas (TIG) surface modification with Fe-based alloy can give protection against wear and corrosion of metallic component material. In this study, an attempt has been made to explore deposition of Fe-C-Si preplaced powders on commercial purity titanium (CP-Ti) by TIG torch melting process to improve resistance of substrate to wear. Three different powder blends with nominal composition of 97Fe2C1Si, 94Fe 4C2Si and 91Fe6C3Si were separately melted on CP-Ti using a conventional TIG welding torch produced at 100 A and energy input 1350 J/mm. Analysis of the results showed that TIG torch produced melt pools geometry with good metallurgical bonding with the substrate. The melt microstructure consisted of different TiC precipitates. Pores were conspicuously seen on the melt microstructure after surface modification with highest carbon content (94Fe 4C2Si). Both microhardness and wear property showed a significant improvement particularly after TIG coating with 94Fe4C2Si. Thus, it appears that an optimized composition of Fe-C-Si preplaced powder with 94Fe4C2Si under TIG melting was the best composition to control wear resistance and for the application of cylindrical liner.

___

  • C. Blawert, N. Hort and K.U. Kainer, “Automotive applications of magnesium and its alloys,” Trans. Indian Inst. Met, vol. 57, pp. 397-408, 2004.
  • A. Vaziri, M.H. Sohi, and A. Safaei, “Liquid phase surface alloying of CP-titanium with aluminum in an atmosphere of argon and nitrogen,” Surface and Coatings Technology, vol. 206, pp. 3788-3794, 2012.
  • M. Maleque, K.A. Bello, A.N. M Idriss and S. Mridha, “Processing of TiC-CNT hybrid composite coating on low alloy steel using TIG torch technique,” Applied Mechanics and Materials, vol. 378, pp. 259-264, 2013.
  • M. A. Maleque A. Umma and N Omar, “Wear mechanisms map of CNT-Al nano-composite, Procedia Engineering,” vol 12, pp. 247-253, 2013.
  • E. A. Association, “The aluminium automotive manual,” EAA, available at, 2011.
  • S. A. Adeleke and M. A. Maleque, “Tungsten inert gas surface alloying of commercial purity titanium (CP-Ti) with Fe-C-Si ternary mixtures,” in Advanced Materials Research, pp. 207-210, 2014.
  • I. Manna, J. Dutta Majumdar, B. Ramesh Chandra, S. Nayak, and N. B. Dahotre, “Laser surface cladding of Fe–B–C, Fe–B–Si and Fe–BC–Si–Al–C on plain carbon steel,” Surface and Coatings Technology, vol. 201, pp. 434-440, 2006.
  • H. Sabet, Sh. Khierandish, Sh. Mirdamadi, and M. Goodarzi, “The Microstructure and abrasive wear resistance of Fe–Cr–C hardfacing alloys with the composition of hypoeutectic, eutectic, and hypereutectic at frac {Cr}{C}= 6,” Tribology Letters, vol. 44, pp. 237-245, 2011.
  • X. H.Wang, S.L. Song, Z.D. Zou, and S.Y. Qu, “Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process,” Materials Science and Engineering: A, vol. 441, pp. 60-67, 2006.
  • J. O. Agunsoye, S. A. Talabi, I. O. Olumiyiwa, and T. Afemefuna, “Effect of silicon additions on the wear properties of grey cast iron,” Journal of Minerals and Materials Characterization and Engineering, vol. 1, pp. 61-67, 2013.
  • M. Sheikholeslami and S. Boutorabi, “A research on the calculation of graphitization ability of gray cast irons,” Iranian Journal of Materials Science & Engineering, vol. 9, 2012.
  • S. Kou, “Heat flow in welding,” Welding Metallurgy, 2nd ed., pp. 37-64, 2003.
  • S. Mridha, A. N. Md Idriss, M.A. Maleque, Suryanto and A. Souad, “Effect of voltage on the consolidation of TiC particulates on steel substrate fused by TIG welding arc”, Int. J. of Mechanical and Materials Engineering, vol. 7, no. 1, pp. 48-53, 2012.
  • Z. Jiyang and L. Jincheng, “Colour metallography of cast iron,” SCI, vol. 7, 2010.
  • J. F. Lancaster, Metallurgy of welding: Elsevier, 1999.
  • S. Mridha, “Titanium nitride layer formation by TIG surface melting in a reactive environment,” Journal of Materials Processing Technology, vol. 168, pp. 471-477, 2005.
  • M. M. Maleque and S. Shah, “The tribological behaviour of Fe-C-Al cast iron – Effect of temperature”, J. of Industrial Lubrication and Tribology, vol 65, no 5, pp.320-327-265, 2013.