Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed

Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed

The analysis of the six-stroke Otto cycle was performed using the finitetimethermodynamics dependence on mean piston speed, equivalence ratioand residual gas fraction. In the analysis, friction loss, internalirreversibilities, heat transfer losses were taken into account by empiricalcorrelations. Relations between power output, thermal efficiency, andcompression ratio were obtained by detailed numerical examples. Theresults were presented as comparative for four- and six-stroke Otto cycle. Itwas assumed that the cycles operate with the same mixture flow per secondso that both performances of cycles can be compared. The study showedthat more fuel flow can be supplied to the six-stroke Otto cycle for the samemixture flow. However, there was a slight increase in the maximum cycletemperature. For this reason, the results are crucial in providing a goodguideline for evaluating and improving the performance of real six-strokeOtto engines.

___

  • 1. E. Arabaci, and Y. İçingür, “Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine” Journal of the Energy Institute, 2016, 89, 569- 577, DOI:10.1016/j.joei.2015.06.006.
  • 2. E. Arabaci, Y. İçingür, H. Solmaz, A. Uyumaz, and E. Yilmaz, “Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine”. Energy conversion and management, 2015, 98, 89-97, DOI:10.1016/j.enconman.2015.03.045.
  • 3. Y. İçingür, E. Arabaci, “Performance and ıdealized air-fuel cycle analysis of a sixstroke spark-ignition engine”. Journal of Polytechnic, 2013, 16, 37-44, DOI:10.2339/2012.16.1
  • 4. E. Arabaci, “Six-stroke reciprocating internal combustion engines” Mehmet Akif Ersoy University Journal of Natural and Applied Sciences Institute, 2012, 3, 37-45.
  • 5. H. Kelem and E. Kelem, E, U.S. Patent No. 7,726,268. Washington, DC: U.S. Patent and Trademark Office, 2010.
  • 6. Özdemir, B. Kiliç, E. Arabacı, R. Orman. “Effect of mean piston speed and residual gas fraction on performance of a fourstroke irreversible Otto cycle engine”. Scientific Journal of Mehmet Akif Ersoy University, 2018, 1, 6-12.
  • 7. E. Arabacı, “Artık gaz kesri ve kurs oranının tersinmez Otto çevriminin performansına ve entropi üretimine etkileri” Avrupa Bilim ve Teknoloji Dergisi, 2018, 14, 83-89. DOI: 10.31590/ejosat.481881
  • 8. E. Arabacı, E, B. Kılıç,” Kurs Oranı Ve Artık Gaz Kesrinin Otto Çevrimli Bir Motorun Performansına Etkisi” Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi, 2018, 2, 100-111. DOI: 10.31200/makuubd.447745
  • 9. F.L. Curzon, B. Ahlborn “Efficiency of a Carnot engine at maximum power output” American Journal of Physics, 1975, 43, 22-24.
  • 10. S.C. Kaushik, S.K. Tyagi, P. Kumar, “Finite time thermodynamics of power and refrigeration cycles”. Springer International Publishing 2017.
  • 11. R. Ebrahimi, M. Hoseinpour, “Performance analysis of irreversible Miller cycle under variable compression ratio” Journal of Thermophysics and Heat Transfer, 2013, 27, 542-548, DOI:10.2514/1. T3981.
  • 12. S.A. Klein, “An explanation for observed compression ratios in internal combustion engines” Journal of engineering for gas turbines and power, 1991, 113, 511-513, DOI:10.1115/1.2906270.
  • 13. Y.L. Ge, L. Chen, and F.R. Sun, “Ecological Optimization of an Irreversible Otto Cycle with Variable Specific Heats of Working Fluid” Proceedings of the Chinese Society of Engineering Thermophysics on Engineering Thermophysics and Energy Utility, Wuhan, China, 2011, 5-7, DOI: 10.1615/TFEC2017.fna.018308.
  • 14. R. Ebrahimi, “Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine” Mathematical and Computer Modelling, 2011, 53, 1289-1297, DOI:10.1016/j.mcm.2010.12.015.
  • 15. R. Ebrahimi, “Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases” Acta Physica Polonica, A., 2013, 124,, 29-34, DOI:10.12693/APhysPolA.124.29.
  • 16. R. Ebrahimi, “Effect of Volume Ratio of Heat Rejection Process on Performance of an Atkinson Cycle” Acta Physica Polonica A, 2018, 133, 201-205, DOI:10.12693/APhysPolA.133.201.
  • 17. J. You, L. Chen, Z. Wu, and F. Sun,” Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function” Science China Technological Sciences, 2018, 61, 453-463, DOI:10.1007/s11431-017-9108-2.
  • 18. Y. Ge, L. Chen, F. Sun, and C. Wu, “Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid” International Journal of Thermal Sciences, 2005, 44, 506-511, DOI:10.1016/j.ijthermalsci.2004.10.00.
  • 19. G. Gonca, “Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)” Energy, 2016, 109, 152-159, DOI:10.1016/j.energy.2016.04.049.
  • 20. Y. Zhao, and J. Chen, “An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis” International Journal of Thermal Sciences, 2007, 46, 605-613, DOI:10.1016/j.ijthermalsci.2006.04.00.
  • 21. E. Dobrucali, “The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine”,. Energy, 2016, 103, 119-126, DOI:10.1016/j.energy.2016.02.160.
  • 22. G. Gonca, B. Sahin, and Y. Ust, “Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version” Energy 2013, 54, 285-290, DOI:10.1016/j.energy.2013.02.004.
  • 23. G. Gonca, and B. Sahin, “The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle”, Applied Mathematical Modelling, 2016, 40, 3764-3782, DOI:10.1016/j.apm.2015.10.044.
  • 24. G. Gonca, and E. Dobrucali, “Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends”, Renewable Energy, 2016, 93, 658-666, DOI:10.1016/j.renene.2016.03.037.
  • 25. G. Gonca, “Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM)”, Applied Mathematical Modelling, 2017, 44, 655-675, DOI:10.1016/j.apm.2017.02.010.
  • 26. A.C. Hernández, J.M.M. Roco, A. Medina and S. Velasco, “An irreversible and optimized four stroke cycle model for automotive engines”, European Journal of Physics, 1996, 17, 11.
  • 27. Mousapour, A. Hajipour, Rashidi, and N. Freidoonimehr, “Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction”, Energy, 2016, 94, 100-109, DOI:10.1016/j.energy.2015.10.073.
  • 28. Y. Ge, L. Chen and X. Qin, “Effect of specific heat variations on irreversible Otto cycle performance”, International Journal of Heat and Mass Transfer, 2018, 122, 403-409, DOI:10.1016/j.ijheatmasstransfer.2018.01.132