Determination of the effects of the simultaneous use of ethanol-diesel emulsion as the main fuel and post-injection fuel in a diesel engine on engine performance and emissions

Determination of the effects of the simultaneous use of ethanol-diesel emulsion as the main fuel and post-injection fuel in a diesel engine on engine performance and emissions

In this article, the effects of heated ethanol diesel blend on emissions were investigated experimentally. Additionally, the effect of post-injection strategies on emissions in the AVL Boost model engine, which has the same characteristics as the experimental engine running with ethanol-diesel emulsion fuel, was investigated as a simulation. In a special designed mixer, the ethanol-diesel emulsion (E10) formed with 10% ethanol and 2% isopropyl was stirred at 40 °C. The emulsion temperature was kept constant between 35-40 °C during the experiments. The homogeneous residence time of the blended fuel improved with increasing temperature. Post-injection strategy tests at 2 different crank angles were mathematically analyzed separately for ethanol diesel emulsion as a post-injection fuel in the simulation software. NOx emissions decreased with E10 fuel at low speeds compared to E0 fuel. Slightly increased NOx emissions in the Bpi2 strategy compared to the Bpi1 strategy. In addition, soot emissions reduced with Bpi1 at all engine speeds. The brake specific fuel consumption with the E10 blend increased by 4.36% compared to E0. However, the brake specific fuel consumption was slightly reduced in the Bpi1 and Bpi2 injection strategies tests compared to the E10 experiment.

___

  • Smith CJ, Forster PM, Allen M, Fuglestvedt J, Millar RJ, Rogelj J, et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nature Communications 2019;10. doi:10.1038/s41467-018-07999-w.
  • EPA. Sources of Greenhouse Gas Emissions 2019. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed November 28, 2019).
  • Tongroon M, Saisirirat P, Suebwong A, Aunchaisri J, Kananont M, Chollacoop N. Combustion and emission characteristics investigation of diesel-ethanol-biodiesel blended fuels in a compression-ignition engine and benefit analysis. Fuel 2019; 255. doi:10.1016/j.fuel.2019.115728.
  • Chong HS, Park Y, Kwon S, Hong Y. Analysis of real driving gaseous emissions from light-duty diesel vehicles. Transportation Research Part D: Transport and Environment 2018;65:485–99. doi:10.1016/j.trd.2018.09.015.
  • Pedrozo VB, May I, Dalla Nora M, Cairns A, Zhao H. Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load. Applied Energy 2016;165:166–82. doi:10.1016/j.apenergy.2015.12.052.
  • He T, Chen Z, Zhu L, Zhang Q. The influence of alcohol additives and EGR on the combustion and emission characteristics of diesel engine under high-load condition. Applied Thermal Engineering 2018;140:363–72. doi:10.1016/j.applthermaleng.2018.05.064.
  • Rakopoulos CD, Rakopoulos DC, Kosmadakis GM, Papagiannakis RG. Experimental comparative assessment of butanol or ethanol diesel-fuel extenders impact on combustion features, cyclic irregularity, and regulated emissions balance in heavy-duty diesel engine. Energy 2019;174:1145–57. doi:10.1016/j.energy.2019.03.063.
  • Tutak W, Jamrozik A, Pyrc M, Sobiepański M. A comparative study of co-combustion process of diesel-ethanol and biodiesel-ethanol blends in the direct injection diesel engine. Applied Thermal Engineering 2017;117:155–63. doi:10.1016/j.applthermaleng.2017.02.029.
  • Satgé De Caro P, Mouloungui Z, Vaitilingom G, Berge JC. Interest of combining an additive with diesel-ethanol blends for use in diesel engines. Fuel 2001;80:565–74. doi:10.1016/S0016-2361(00)00117-4.
  • Xiao Z, Ladommatos N, Zhao H. The effect of aromatic hydrocarbons and oxygenates on diesel engine emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 2000;214:307–32. doi:10.1243/0954407001527448.
  • Bilgin A, Durgun O, Şahin Z. The effects of diesel-ethanol blends on diesel engine performance. Energy Sources 2002;24:431–40. doi:10.1080/00908310252889933.
  • Kim HY, Ge JC, Choi NJ. Effects of Ethanol–Diesel on the Combustion and Emissions from a Diesel Engine at a Low Idle Speed. Applied Sciences 2020;10:4153. doi:10.3390/APP10124153.
  • Çelebi Y, Aydın H. Investigation of the effects of butanol addition on safflower biodiesel usage as fuel in a generator diesel engine. Fuel 2018;222:385–93. doi:10.1016/j.fuel.2018.02.174.
  • Shahir SA, Masjuki HH, Kalam MA, Imran A, Fattah IMR, Sanjid A. Feasibility of diesel-biodiesel-ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion. Renewable and Sustainable Energy Reviews 2014;32:379–95. doi:10.1016/j.rser.2014.01.029.
  • Lapuerta M, Armas O, García-Contreras R. Stability of diesel-bioethanol blends for use in diesel engines. Fuel 2007;86:1351–7. doi:10.1016/j.fuel.2006.11.042.
  • Datta A, Mandal BK. Impact of alcohol addition to diesel on the performance combustion and emissions of a compression ignition engine. Applied Thermal Engineering 2016;98:670–82. doi:10.1016/j.applthermaleng.2015.12.047.
  • Tongroon M, Saisirirat P, Suebwong A, Aunchaisri J, Kananont M, Chollacoop N. Combustion and emission characteristics investigation of diesel-ethanol- biodiesel blended fuels in a compression-ignition engine and bene fi t analysis. Fuel 2019;255:115728. doi:10.1016/j.fuel.2019.115728.
  • Kwanchareon P, Luengnaruemitchai A, Jai-In S. Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 2007;86:1053–61. doi:10.1016/J.FUEL.2006.09.034.
  • Redel-Macías MD, Pinzi S, Babaie M, Zare A, Cubero-Atienza A, Dorado MP. Bibliometric Studies on Emissions from Diesel Engines Running on Alcohol/Diesel Fuel Blends. A Case Study about Noise Emissions. Processes 2021;9:623. doi:10.3390/PR9040623.
  • Ribeiro NM, Pinto AC, Quintella CM, da Rocha GO, Teixeira LSG, Guarieiro LLN, et al. The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review. Energy & Fuels 2007;21:2433–45. doi:10.1021/ef070060r.
  • Gürbüz H. Modeling of the effects of post injection on emissions in hybrid use of a diesel-ethanol fueled engine. Ph.D Thesis, Yıldız Technical University, 2019.
  • Kuszewski H, Jaworski A, Ustrzycki A, Lejda K, Balawender K, Woś P. Use of the constant volume combustion chamber to examine the properties of autoignition and derived cetane number of mixtures of diesel fuel and ethanol. Fuel 2017;200:564–75. doi:10.1016/j.fuel.2017.04.021.
  • Murphy MJ, Taylor JD, Mccormick RL. Compendium of Experimental Cetane Number Data. National Renewable Energy Laboratory 2017:1–48. doi:10.2172/1086353.
  • Schöpe M. Renewable energy directive. European Wind Energy Conference and Exhibition 2008 2008;1:32–8.
  • ICCT. Final recast RED II: Renewable Energy Directive for 2021-2030 in the European Union. 2018.
  • Rakopoulos DC, Rakopoulos CD, Kakaras EC, Giakoumis EG. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine. Energy Conversion and Management 2008;49:3155–62. doi:10.1016/j.enconman.2008.05.023.
  • Rossomando B, Arsie I, Pianese C. Analysis of the impact of Diesel-Ethanol fuel blends on CI engine performance and emissions via multi-zone combustion modelling. Energy Procedia, vol. 126, Elsevier Ltd; 2017, p. 1059–66. doi:10.1016/j.egypro.2017.08.203.
  • Huang J, Wang Y, Li S, Roskilly AP, Yu H, Li H. Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol-diesel blends. Applied Thermal Engineering 2009;29:2484–90. doi:10.1016/j.applthermaleng.2008.12.016.
  • Petranović Z, Edelbauer W, Vujanović M, Duić N. Modelling of spray and combustion processes by using the Eulerian multiphase approach and detailed chemical kinetics. Fuel 2017;191:25–35 doi:10.1016/j.fuel.2016.11.051.
  • Ozener O, Ozkan M, Yuksek L. Modelling analysis of multiple diesel injection strategies with one-dimensional simulation coupled with artificial neural networks. Thermal Science 2017;21:413–25. doi:10.2298/TSCI160504223O.
  • Padala S, Woo C, Kook S, Hawkes ER. Ethanol utilisation in a diesel engine using dual-fuelling technology. Fuel 2013;109:597–607. doi:10.1016/j.fuel.2013.03.049.
  • Arrègle J, Pastor J V., López JJ, García A. Insights on postinjection-associated soot emissions in direct injection diesel engines. Combustion and Flame 2008;154:448–61. doi:10.1016/j.combustflame.2008.04.021.
  • Lopez JJ, Martin J, Garcia A, Villalta D, Warey A, Domenech V. Characterization of in-cylinder soot oxidation using two-color pyrometry in a production light-duty diesel engine. SAE Technical Papers 2016;2016. doi:10.4271/2016-01-0735.
  • Tsurushima T, Zhang L, Ishii Y. A study of unburnt hydrocarbon emission in small di diesel engines. SAE Technical Papers, SAE International; 1999. doi:10.4271/1999-01-0512.
  • Nabi MN, Rasul M, Gudimetla P. Modelling and simulation of performance and combustion characteristics of diesel engine. Energy Procedia, vol. 160, Elsevier Ltd; 2019, p. 662–9. doi:10.1016/j.egypro.2019.02.219.
  • Tutak W, Jamrozik A, Bereczky Á, Lukacs K. Effects of injection timing of diesel fuel on performance and emission of dual fuel diesel engine powered by diesel/E85 fuels. Transport 2018;33:633–46. doi:10.3846/transport.2018.1572.
  • Heywood JB. Internal combustion engine fundamentals. McGraw-Hill; 1988.
  • GmbH AL, editor. AVL BOOST User Guide version 2018,. Graz, Austria: AVL LIST GmbH; 2018.
  • Woschni G. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Papers, SAE International; 1967. doi:10.4271/670931.
  • Brunt MFJ, Platts KC. Calculation of heat release in direct injection diesel engines. SAE Technical Papers, SAE International; 1999. doi:10.4271/1999-01-0187.
  • Broekaert S, De Cuyper T, De Paepe M, Verhelst S. Evaluation of empirical heat transfer models for HCCI combustion in a CFR engine. Applied Energy 2017;205:1141–50. doi:10.1016/j.apenergy.2017.08.100.
  • Park SH, Yoon SH, Suh HK, Lee CS. Effect of the Temperature Variation on Properties of Biodiesel and Biodiesel-Ethanol Blends Fuels. Oil & Gas Science and Technology - Revue de l’IFP 2008;63:737–45. doi:10.2516/ogst:2008038.
  • Garai A, Mondal S, Pal S, Chatterjee S, Sen S, Mukhopadhyay A. Experimental investigation of spray formation in a hybrid atomizer using diesel, ethanol and ethanol blended diesel. Experimental Thermal and Fluid Science 2019;100:158–70. doi:10.1016/j.expthermflusci.2018.09.003.
  • Li X, Cheng Y, Ji S, Yang X, Wang L. Sensitivity analysis of fuel injection characteristics of GDI injector to injector nozzle diameter. Energies 2019;12. doi:10.3390/en12030434.
  • Payri R, Gimeno J, Marti-Aldaravi P, Vaquerizo D. Internal flowcharacterization on an ECN GDi injector. Atomization and Sprays 2016;26:889–919. doi:10.1615/AtomizSpr.2015013930.
  • Prabakaran B. Utilization of Diesel-Ethanol Blends in a CI Engine as a Fuel with Nano Alumina as Combustion Enhancer. SAE Technical Papers, vol. 2018- July, SAE International; 2018. doi:10.4271/2018-28-0010.
  • Armas O, García-Contreras R, Ramos Á. Pollutant emissions from New European Driving Cycle with ethanol and butanol diesel blends. Fuel Processing Technology 2014;122:64–71. doi:10.1016/j.fuproc.2014.01.023.
  • Wu Y, Wang P, Muhammad Farhan S, Yi J, Lei L. Effect of post-injection on combustion and exhaust emissions in DI diesel engine. Fuel 2019;258:116131. doi:10.1016/J.FUEL.2019.116131.
  • Tse H, Leung CW, Cheung CS. Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy 2015;83:343–50. doi:10.1016/j.energy.2015.02.030.
  • Desantes JM, Arrègle J, López JJ, García A. A comprehensive study of diesel combustion and emissions with post-injection. SAE Technical Papers 2007;2007-01–09:11. doi:10.4271/2007-01-0915.