Materials Selection for Dynamic Variable Geometry Turbocharger Flow Control Application / Dinamik Değişken Geometri Turbo Akış Kontrolü Uygulaması için Malzeme Seçimi

This paper investigates material candidates for use in a turbocharger turbine technology known as the active control turbocharger (ACT) which is a distinct technology to the Variable Geometry Turbine (VGT) for turbochargers but broadly based on this technology. This concept involves the use of an actuated nozzle mechanism that is oscillated to provide a more active change of the turbine inlet area to the turbine resulting in response to incoming instantaneous exhaust gas flow pulsating characteristics to provide greater extraction of exhaust gas pulse energy. Careful materials selection is required for this highly dynamic application to overcome the creep, fatigue, oxidation and high temperature challenges associated with the diesel engine exhaust conditions to which this technology is exposed to. The investigation of materials suitability for this application was conducted for steady and transient flow conditions. It was found that the vane undergoes cyclical loading at a maximum stress of 58 MPa for 109 cycles of operation at an inlet temperature of 800oC and pressure of 240 kPa. The vane experiences maximum stresses in the closed position which occurs at a vane angle of 70o. It has been found that the implementation of ACT technology is possible using currently available materials. Using the information obtained from the transient analysis, a material selection process was developed to incorporate the specific application requirements of the ACT application. A two tiered weighting decision process was applied; first to analyse the relative importance of various material properties to each application requirement and then to the properties of individual materials. Materials Nimonic 90 and IN X750/751 obtained the highest overall scores from the selection process and were shown to be capable of withstanding the creep requirements to a minimum safety factor of 2, a failure mechanism of primary concern to the high temperature application. Nimonic 80A, although receiving a final rating 8% lower than Nimonic 90, also showed promising potential to offer a solution, with superior corrosion properties to both Nimonic 90 and IN X750/751. In addition to the specific results, a significant contribution of this work has been in providing a foundation for future numerical and material selection analyses for ACT development. Özet: Bu makalede, aktif kontrol turbo turbo Değişken geometri Türbin (VGT) için ideal bir teknoloji ama geniş bu teknolojiye dayalı (ACT) olarak bilinen bir turbo türbin teknolojisinde kullanılmak üzere malzeme adayları inceler. Bu kavram, egzoz gazı darbe enerjisinin daha büyük çıkarma sağlamak için, gelen anlık egzoz gazı akışı zonklayan özelliklerine yanıt olarak ortaya çıkan türbine türbin giriş alanının daha etkin bir değişiklik temin etmek üzere bir salınım tahrikli meme mekanizmasının kullanılmasını gerektirir. Dikkatli malzeme seçimi, bu teknolojinin maruz dizel motor egzoz koşulları ile ilişkili sünme, yorulma, oksidasyon ve yüksek sıcaklık zorlukları aşmak için bu son derece dinamik bir uygulama için gereklidir. Bu uygulama için malzeme uygunluğu araştırılması sürekli ve geçici akış koşulları için yürütülmüştür. Bu kanat bir giriş 800ºC'den bir sıcaklıkta ve 240 kPa basınçta işletim için 109 devir için 58 MPa ölçüsünde bir stresinde çevrimsel yükü bulgulanmıştır. kanat 70o bir kanat açı meydana kapalı konumda maksimum gerilmeleri karşılaşır. Bu ACT teknolojisinin uygulanması mevcut malzemeler kullanılarak mümkün olduğu bulunmuştur. Geçici analizinden elde edilen bilgileri kullanarak, bir malzeme seçimi süreci ACT uygulamanın özel uygulama gereksinimlerini birleştirmek için geliştirilmiştir. İki katmanlı ağırlıklandırma karar süreci uygulandı; her uygulama ihtiyacına ve sonra tek tek malzemelerin özelliklerine çeşitli malzeme özelliklerinin göreli önemini analiz ilk. Malzeme Nicomic 90 ve X750 / 751 IN seçim sürecinden en yüksek toplam puanı elde ve 2 minimum güvenlik faktörü, yüksek sıcaklık uygulaması için birincil endişe başarısızlık mekanizmasına sürünme şartlarını dayanabilen olduğu gösterilmiştir. Nimonic 80A, Nimonic 90% 8 daha düşük bir nihai derecelendirme aldıktan rağmen, aynı zamanda hem Nimonic 90 ve X750 / 751 IN üstün korozyon özelliklerine sahip, bir çözüm sunmak için potansiyel vaat gösterdi. Belirli sonuçlarına ek olarak, bu çalışmanın önemli bir katkı gelecekteki sayısal ve malzeme seçimi için bir temel sağlayarak olmuştur ACT gelişimi için analiz eder.

___

  • References
  • European Commission (2010) Reducing CO2 emissions from light-duty vehicles [Online].Availablefrom: http://ec.europa.eu/environment/air/transport/co2/co2_home.htm
  • Martinez-Botas, R. and Pesiridis, A. (2007). Experimental evaluation of active flow control mixed-flow turbine for automotive turbocharger application. Journal of Turbomachinery. 129 p. 44–52.
  • Pesiridis, A., and Martinez-Botas, R., “Active Control Turbocharger for Automotive Application: An experimental evaluation”, Conference Proceedings of the 8th International Conference on Turbocharging and Turbochargers, IMechE, London, 17-18 May 2006.
  • Rajoo, S. (2007) Steady and Pulsating Performance of a Variable Geometry Mixed Flow Turbocharger Turbine. Ph.D. Imperial College London
  • Honeywell (2010), Honeywell Turbo Technologies [Online]. Available from: http://www.honeywell.com/sites/ts/tt/
  • Arnold, S., Honeywell International Inc. (2004) Vane Design For Use In Variable Geometry Turbocharger. 6,672,059
  • Munz, S., Schmidt, P., Romuss, C., Brune, H. and Schiffer, H.P. (2007). Turbocharger for emission concepts with low-pressure-end exhaust-gas recirculation. [Online]. Available from: http://www.turbos.bwauto.com/service/default.aspx?doctype=12
  • Farag, M. (2008). Materials and Process Selection for Engineering Design. Boca Raton, USA: CRC Press
  • Mazur, Z., Luna-Ramírez, A., Juárez-Islas, J.A. and Campos-Amezcua, A. (2005). Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Engineering Failure Analysis.[Online] 12 p. 474-486
  • Jovanovic, M. et al. (2005). Microstructure and mechanical properties of precision cast TiAl turbocharger wheel. Journal of Materials Processing Technology. 167 p. 14-21.
  • Shouren, W. et al. (2008). Centrifugal precision cast TiAl turbocharger wheel using ceramic mold. Journal of Materials Processing Technology. 204 p. 492-497.
  • Tetsui, T., Ono, S. (1999). Endurance and composition and microstructure effects on endurance of TiAl used in turbochargers. Intermetallics. 7 p. 689-697.
  • Zhang, W.J. et al. (2001). Physical properties of TiAl-base alloys. Scripta Materialia. 45 p. 645-651.
  • Tetsui, T. (2002). Development of a TiAl turbocharger for passenger vehicles. Materials Science & Engineering A. p. 582-588
  • Bocanegra-Bernal, M.H. and Matovic, B. (2010). Mechanical properties of silicon nitride based ceramics and its use in structural applications at high temperatures. Materials Science & Engineering A. 527 p. 1314-1338.
  • Sims, C., Stoloff, N. and Hagel, W. (eds.) (1987). Superalloys II. USA: John Wiley & Sons, Inc.
  • Dieter, G. (1997). Overview of the Materials Selection Process. In: ASM Handbook: Volume 20, Materials Selection and Design. ASM Handbooks Online.
  • Special Metals Corporation. (2002). INCONEL alloy 600. [Online]. Available from: http://www.specialmetals.com/products/index.php
  • Special Metals Corporation. (2004). INCONEL alloy X-750. [Online]. Available from: http://www.specialmetals.com/products/index.php
  • Special Metals Corporation. (2004). INCONEL alloy 751. [Online]. Available from: http://www.specialmetals.com/products/index.php
  • Special Metals Corporation. (2004). INCOLOY 864. [Online]. Available from: http://www.specialmetals.com/products/index.php
  • MetalPrices (2010) Rhenium [Online]. Available from: http://www.metalprices.com/FreeSite/metals/re/re.asp