OPTIMIZATION OF DIFFERENT TYPES OF HEALING CHAMBERS FOR GRAFTED BITTERGOURD (Momordica charantia L.) SEEDLINGS

OPTIMIZATION OF DIFFERENT TYPES OF HEALING CHAMBERS FOR GRAFTED BITTERGOURD (Momordica charantia L.) SEEDLINGS

Ampalaya or bittergourd is an important vegetable crop in the Philippines. The study was conducted to determine the survival rate of grafting ampalaya with patola using cleft method of grafting and optimize type of acclimatization in rearing grafted ampalaya seedlings. The experiment was laid out in Randomized Complete Block Design with four (4) treatments replicated three (3) times with ten (10) sample plants per replication. The following treatments were as follows: T0- Control, T1- Individual acclimatization (without humidifier), T2-Individual acclimatization (with humidifier) and T3–Group acclimatization. Results revealed humidifier can supply an improvised healing chamber with a dimension of (L- 2.3 m, W-1.28 m and H- 1.08 m) and was deemed necessary in rearing grafted seedlings to attain better survival. Group acclimatization has the highest percentage graftake and survival. Ten (10) days with humidifier plus six (6) days hardening with a total acclimatization period of 16 days from grafting until prior transplanting was sufficient in establishing vascular connection between scion and stock with respect to substantial mean rainfall amount of 61.6 mm experienced during the acclimatization period favoring the acquisition of optimum range of relative humidity in a healing chamber necessary for the survival of grafted ampalaya seedlings. The relative humidity experienced during the acclimatization period specifically on the first 10 days of grafted ampalaya seedlings inside the healing chamber was 99% and a temperature ranged of 25-30°C.

___

  • Anbarasan, A., & Tamilmani, C. (2013). Effect of calcium pectate on the physiochemical changes during the ripening of bitter gourd fruit ( Momordica charantia L Var-Co-1 ). Asian Journal of Plant Science and Research, 3(4), 51–58. Daley, S. L., Wechter, W. P., & Hassell, R. L. (2014). Improvement of grafted watermelon transplant survival as a result of size and starch increases over time caused by rootstock fatty alcohol treatment: Part II. HortTechnology, 24(3), 350–354. Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R., & Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43(6), 1670–1672. Davis, A. R., Perkins-Veazie, P., Sakata, Y., López-Galarza, S., Maroto, J. V., Lee, S. G., … Lee, J. M. (2008). Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50–74. https://doi.org/10.1080/07352680802053940 Johnson, S. J., & Miles, C. A. (2011). Effect of healing chamber design on the survival of grafted eggplant, tomato, and watermelon. HortTechnology, 21(6), 752–758. Kubota, C., McClure, M. a., Kokalis-Burelle, N., Bausher, M. G., & Rosskopf, E. N. (2008). Vegetable grafting: History, use, and current technology status in North America. Hortscience, 43(D), 1664– 1669. Lee Jung Myung. (1994). Cultivation of grafted vegetables. I.Current status, grafting methods, and benefits. HortScience, 29(4), 235–239. Leonardi, C., & Romano, D. (2004). Recent issues on vegetable grafting. Acta Horticulturae, 631, 163– 174. https://doi.org/10.17660/ActaHortic.2004.631.21 Miles, C., Hesnault, L., Johnson, S., & Kreider, P. (2013). Vegetable Grafting : Watermelon, 1–7. Okatan, V. (2017). GA3 Uygulamalarının Malta Eriği (Eriobotrya japonica) Tohumlarının Çimlenmesi ve Çöğür Gelişimi Üzerine Etkileri. GÜFBED/GUSTIJ (2017) 7 (2): 309-313. Ozores-Hampton, M., & Frasca, A. C. (2013). Healing Chamber for Grafted Vegetable Seedlings in Florida, (HS1232), 5. Rivard, C. L., & Louws, F. J. (2008). Grafting to manage soilborne diseases in heirloom tomato production. HortScience, 43(7), 2104–2111. Star, version 2.0.1 (2014). Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute, Los Baños, Laguna. Wang, J., & Lin, C.-H. (2005). Integrated management of tomato bacterial wilt. AVRDC—The World Vegetable Center PO Box 42, Shanhua, Tainan, Taiwan www.avrdc.org, AVRDC publ. Villocino, S. B. 2011. Sex expression and yield performance of watermelon (citrullus lanatus thunb.) As influenced by grafting and carbonized ricehull amendment. Dissertation manuscript as doctor of philosophy in horticulture at the visayas state university, visca, baybay city,leyte pp.36-48