Inspection of aircraft parts by eddy current method

Aviation technologies are developing due to the need for advancements at military field and the increase in commercial air transportation. The development of aviation technology also forces the development of Non-Destructive Testing (NDT) Standards. The accuracy of these inspections, their fast results and their applicability on many materials is one of the important issues to be studied. Eddy current testing, which has a significant advantage in terms of test speed and accuracy, is one of the main methods used in the non-destructive testing of aircraft parts. The test is used not only in metal and metal alloy materials, but also in composite materials with high conductivity such as carbon fiber to detect failures. Also, improvements at the eddy current test system and probes play a major role in the failure assessment of aircraft parts. In this article, comprehensive technical information about the eddy current testing method is given and the case studies are presented.

Inspection of aircraft parts by eddy current method

Aviation technologies are developing due to the need for advancements at military field and the increase in commercial air transportation. The development of aviation technology also forces the development of Non-Destructive Testing (NDT) Standards. The accuracy of these inspections, their fast results and their applicability on many materials is one of the important issues to be studied. Eddy current testing, which has a significant advantage in terms of test speed and accuracy, is one of the main methods used in the non-destructive testing of aircraft parts. The test is used not only in metal and metal alloy materials, but also in composite materials with high conductivity such as carbon fiber to detect failures. Also, improvements at the eddy current test system and probes play a major role in the failure assessment of aircraft parts. In this article, comprehensive technical information about the eddy current testing method is given and the case studies are presented.

___

  • Onursal, M. 2010. “Uçaklarda kullanılan metal malzemelere uygulanan tahribatsız muayeneler”. Yüksek lisans tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 40-43.
  • Durmuş, H. ve Baygut, A. 2018. Soğuk dövme yöntemi ile üretilen bağlantı elemanındaki kılcal kafa–kılcal vida diş yüzey çatlaklarının girdap akımları metodu ile analizi. Sinop Üniversitesi Fen Bilimleri Dergisi, 4(1), 28-36.
  • https://www.testexndt.co.uk/services/eddy-current-testing/ (30.05.2023).
  • https://atacert.com/eddy-current-girdap-akimlari-muayenesi/ (30.05.2023).
  • Taşkin, H.B. 2020. “İletken kabloların yüzey hatalarının tespitinde kullanılan tahribatsız muayene yöntemi için girdap akım bobini tasarlanması”. Yüksek lisans tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri, Türkiye, 20.
  • Yakupoğlu, A. 2005. “Girdap akımı probu ile yüzey çatlaklarının algılanması”. Yüksek lisans tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye, 19-22.
  • Karainci, N., Ekinci, Ş., Bulubay, Ü. ve Doğruöz, M. 1993. Girdap Akımları, Seviye 1, TR – 304, Ç.N.A.E.M, İstanbul.
  • Salma, A. 2011. Tahribatsız muayene metotları ve doğalgaz boru hatlarındaki kaynaklı bağlantıların radyografik araştırılması”. Yüksek lisans tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 29-32.
  • Akgün, A.F., Yıldırım, A. ve Baş, N. 1991. Tahribatsız Testlerde Malzeme Süreksizlikleri, TR – 301, Ç.N.A.E.M, İstanbul.
  • Chady, T., Okarma, K., Mikołajczyk, R., Dziendzikowski, M., Synaszko, P., and Dragan, K. 2021. Extended damage detection and identification in aircraft structure based on multifrequency eddy current method and mutual image similarity assessment. Materials, 14(16), 4452.
  • Hu, Y., Zhu, S., and Ge, Y. 2021. Study of rotor eddy current losses in high-speed permanent magnet motor for aircraft applications. 24th International Conference on Electrical Machines and Systems (ICEMS), October 31-November 3, Hybrid, Korea, 1095-1100.
  • Aquilina, M.J., Underhill, P.R. and Krause, T.W. 2021. Pulsed eddy current analysis of cracks under rivets on aircraft. Canadian Institute for Non-destructive Evaluation, 42(2), 6-10.
  • Le, M., Luong, V.S., Nguyen, D.K., Le, D.K. and Lee, J. 2022. Automatic detection of latent corrosion in an aircraft structure by electromagnetic testing: a machine learning approach. Applied Sciences, 12(10), 5175.
  • Zhang, L., Deng, R., Ning, N., Fan, J., Wang, W. and Song, K. 2022. Study on remote field eddy current testing technology for crack-like defects in long truss structure of aircraft. Materials, 15(15), 5093.
  • Wang, R., Bao, B., Wang, W., Zhang, M., Liu, L. and Song, K. 2023. Research on remote-field eddy current focusing method for detecting hidden defects in aircraft riveted components, Research Square. https://europepmc.org/article/ppr/ppr659299#impact (30.05.2023).
  • Ai, J., Zhou, Q., Zhang, X., Li, S., Long, B. and Bai, L. 2023. Improving magnetic field response of eddy current magneto-optical imaging for defect detection in carbon fiber reinforced polymers. Applied Sciences, 13(7), 4541.
  • Çelikadam, M. (2019). “Girdap akımları temelli bir hata tespiti yaklaşımının gerçek zamanlı gerçeklenmesi”. Yüksek lisans tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, Türkiye, 7.
  • Hernandez, J., Fouliard, Q., Vo, K. and Raghavan, S. 2022. Detection of corrosion under insulation on aerospace structures via pulsed eddy current thermography. Aerospace Science and Technology, 121, 107317.
  • Fan, X., He, Y., and Chen, T. 2023. Research on fatigue crack quantitative monitoring based on eddy current sensor with an interactive induction coil layout. Smart Materials and Structures, 32(3), 035013.