Arttirimli doğrusal olmayan dinamik çevirmeye dayali bir quadrotor'un hata toleransli kontrolü

Karim Ahmdi bir Ph.D. uçuş kontrolü ve dinamiği alanında havacılık mühendisliği mezunu. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Havacılık ve Uzay Mühendisliği Bölümü, Adana'da Akıllı Uçuş Laboratuvarı'nda Doktora Sonrası Araştırmacı olarak çalışmaktadır. Yüksek lisansını Tahran K.H. Toosi Üniversitesi'nden, Doktora derecesini ise Azad Üniversitesi bilim ve araştırma dalında almıştır. Kontrol sistemi tasarımı, uyarlamalı kontrol, sağlam kontrol, hataya dayanıklı kontrol ve özellikle çok rotorlu insansız hava araçlarında kontrol algoritmalarının uygulanması konusunda uzmandır. Ayrıca bilgisayar kodu geliştirme (C, MATLAB) konusunda da deneyimlidir. Davood Asadi, 2009 yılında Sharif Üniversitesi'nden Havacılık ve Uzay Mühendisliği alanında lisans ve yüksek lisans derecesi aldı ve doktora derecesini 2009 yılında aldı. 2014 yılında Amirkabir Teknoloji Üniversitesi, Tahran, İran'dan havacılık ve uzay mühendisliği, Uçuş Dinamiği ve Kontrol bölümünden mezun oldu. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Havacılık ve Uzay Mühendisliği Bölümü'nde Yardımcı Doçent olarak görev yapmaktadır. Araştırma ilgi alanları arasında uçuş dinamikleri, hava araçlarının simülasyonu, hava robotiği ve otonom hareket planlaması, hataya dayanıklı kontrol ve görüş tabanlı hedef tespiti ve navigasyon yer almaktadır. Yaser Nabavi, Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Havacılık ve Uzay Mühendisliği Bölümü, Adana'da Akıllı Uçuş Laboratuvarı'nda Doktora Sonrası Araştırmacı olarak çalışmaktadır. Lisans, Yüksek Lisans ve Doktora derecelerini aldı. hepsi Sharif University of Technology'den sırasıyla 1999, 2001 ve 2017'de Uçuş Dinamiği ve Kontrolüne odaklanarak Havacılık ve Uzay Mühendisliği bölümünden mezun oldu. Özellikle insansız hava aracı uygulamaları için yörünge planlama, dinamik modelleme ve simülasyon, sistem tanımlama, sezgisel optimizasyon, rehberlik ve navigasyon konularında uzmandır. Ayrıca sistem tasarımı ve analizi, proje yönetimi ve ayrıca bilgisayar programlama (FORTRAN, C++, C#, MATLAB) ile ilgileniyor ve deneyimli.

Fault tolerant control of a quadrotor based on incremental nonlinear dynamic inversion

The multirotor unmanned aerial vehicles (UAVs) have rapidly attracted interest of the researchers since they play a unique role in a variety of areas including the military, agriculture, rescue, and mining. Actuator fault or failure is inevitable during multi-rotor’s operations, which can endanger humans on the ground in addition to costly damage to the system itself. Therefore, this paper introduces a nonlinear controller algorithm for fault-tolerant control of a quadcopter with partial loss of actuator effectiveness. The introduced controller includes a cascade structure of the fast inner-loop dynamics and slow outer-loop dynamics. In the inner-loop part of the controller, an incremental nonlinear dynamic inversion controller is applied and a modified PID control algorithm is used in the outer-loop of the controller. Simulation results for different fault scenarios demonstrate that the proposed fault-tolerant controller approach can quickly adapt itself to the abrupt change due to the motor faults and tracks the desired inputs satisfactorily.

___

  • Turan, V., Avşar, E., Asadi, D., and Aydin, E. A. , 2021. “Image Processing Based Autonomous Landing Zone Detection for a Multi-Rotor Drone in Emergency Situations.” Turkish Journal of Engineering, 5, (4).
  • Asadi, D. , 2021. “Partial Engine Fault Detection and Control of a Quadrotor Considering Model Uncertainty.” Turkish Journal of Engineering, 6, (2), 106–117.
  • Asadi, D., and Atkins, E. M. , 2018. “Multi-Objective Weight Optimization for Trajectory Planning of an Airplane with Structural Damage.” Journal of Intelligent and Robotic Systems: Theory and Applications, 91, (3–4).
  • Asadi, D., Sabzehparvar, M., Atkins, E. M., and Talebi, H. A. , 2014. “Damaged Airplane Trajectory Planning Based on Flight Envelope and Motion Primitives.” Journal of Aircraft, 51, (6), 1740–1757.
  • Asadi, D., Sabzehparvar, M., and Talebi, H. A. , 2013. “Damaged Airplane Flight Envelope and Stability Evaluation.” Aircraft Engineering and Aerospace Technology, 85, (3), 186–198.
  • Asadi, D., Ahmadi, K., Nabavi-chashmi, S., and Ö., T. , 2021. “Controlability of Multi-Rotors under Motor Fault Effect.” Adana Alparslan Turkes Science and Technology University Journal of Science, 4, (2), 24–43.
  • Ahmadi, K., Asadi, D., and Pazooki, F. , 2019. “Nonlinear L1 Adaptive Control of an Airplane with Structural Damage.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233, (1).
  • Asadi, D., and Ahmadi, K. , 2020. “Nonlinear Robust Adaptive Control of an Airplane with Structural Damage.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234, (14), 2076–2088.
  • Asadi, D., and Bagherzadeh, S. A. , 2017. “Nonlinear Adaptive Sliding Mode Tracking Control of an Airplane with Wing Damage.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232, (8), 1405–1420.
  • Alwi, H., and Edwards, C. , 2013. Fault Tolerant Control of an Octorotor Using LPV Based Sliding Mode Control Allocation.
  • Navabi, M., Davoodi, A., and Mirzaei, H. , 2021. “Trajectory Tracking of Under-Actuated Quadcopter Using Lyapunov-Based Optimum Adaptive Controller.” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.
  • Ahmadi Dastgerdi, K., Pazooki, F., and Roshanian, J. , 2020. “Model Reference Adaptive Control of a Small Satellite in the Presence of Parameter Uncertainties.” Scientia Iranica, 27, (6), 2933–2944.
  • Asadi, D., Ahmadi, K., and Nabavi, S. Y. , 2021. “Fault-Tolerant Trajectory Tracking Control of a Quadcopter in Presence of a Motor Fault.” International Journal of Aeronautical and Space Sciences.
  • Gao, Z., Cecati, C., and Ding, S. X. , 2015. “A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches.” IEEE Transactions on Industrial Electronics, 62, (6), 3757–3767.
  • Nguyen, N. P., and Hong, S. K. , 2019. “Active Fault-Tolerant Control of a Quadcopter against Time-Varying Actuator Faults and Saturations Using Sliding Mode Backstepping Approach.” Applied Sciences (Switzerland), 9, (19).
  • Barghandan, S., Badamchizadeh, M. A., and Jahed-Motlagh, M. R. , 2017. “Improved Adaptive Fuzzy Sliding Mode Controller for Robust Fault Tolerant of a Quadrotor.” International Journal of Control, Automation and Systems, 15, (1), 427–441.
  • Lanzon, A., Freddi, A., and Longhi, S. , 2014. “Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure.” Journal of Guidance, Control, and Dynamics, 37, (2), 580–591.
  • Schneider, T., Ducard, G., Rudin, K., and Strupler, P. , 2012. Fault-Tolerant Control Allocation for Multirotor Helicopters Using Parametric Programming.
  • Besnard, L., Shtessel, Y. B., and Landrum, B. , 2012. “Quadrotor Vehicle Control via Sliding Mode Controller Driven by Sliding Mode Disturbance Observer.” Journal of the Franklin Institute, 349, (2), 658–684.
  • Quan, Q., Introduction to Multicopter Design and Control. 1st Edition, Springer, Singapore, 2017.
  • Lippiello, V., Ruggiero, F., and Serra, D. , 2014. Emergency Landing for a Quadrotor in Case of a Propeller Failure: A Backstepping Approach.
  • Sun, S., Wang, X., Chu, Q., and Visser, C. d. , 2021. “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss of Two Opposing Rotors.” IEEE Transactions on Robotics, 37, (1), 116–130.
  • Sun, S., Cioffi, G., De Visser, C., and Scaramuzza, D. , 2021. “Autonomous Quadrotor Flight Despite Rotor Failure With Onboard Vision Sensors: Frames vs. Events.” IEEE Robotics and Automation Letters.
  • Jung, W., and Bang, H. , 2021. “Fault and Failure Tolerant Model Predictive Control of Quadrotor UAV.” International Journal of Aeronautical and Space Sciences, 22, (3), 663–675.
  • Du, G.-X., Quan, Q., and Cai, K.-Y. , 2015. “Controllability Analysis and Degraded Control for a Class of Hexacopters Subject to Rotor Failures.” Journal of Intelligent & Robotic Systems, 78, (1), 143–157.
  • Lee, J., Choi, H. S., and Shim, H. , 2016. “Fault Tolerant Control of Hexacopter for Actuator Faults Using Time Delay Control Method.” International Journal of Aeronautical and Space Sciences, 17, 54–63.
  • Nguyen, N. P., Xuan Mung, N., and Hong, S. K. , 2019. Actuator Fault Detection and Fault-Tolerant Control for Hexacopter. Sensors .19, (21).
  • Butterworth, S. , 1930. “On the Theory of Filter Amplifiers.” Experimental Wireless and the Wireless Engineer, 7.