Streptozotosin ile Tip-2 Diyabet Oluşturulan Sıçanlarda Çam Yağının Antihiperglisemik ve Bazı Biyokimyasal Parametrelere Etkisi

Bu çalışma, streptozotosin ile Tip-2 diyabet oluşturulan Wistar sıçanlarda çam yağının hiperglisemi ile bazı biyokimyasal parametrelere etkisinin araştırılması için tasarlandı. Sıçanlar, kontrol (K), diyabet (STZ-DM) ve diyabet+çam yağı (STZ-DM+ÇY) olmak üzere üç gruba ayrıldı. Diyabet gruplarına intraperitoneal enjeksiyonla streptozotosin (45 mg/kg) verilerek diyabet oluşturuldu. Çam yağı grubundaki sıçanlara (STZ-DM+ÇY) haftada iki gün 1 ml/kg (v/v) dozunda intraperitoneal enjeksiyonla çam yağı ve 1 g/L düzeyinde saf çam yağı içme suyuna ilave edilerek verildi. Analiz sonuçlarına göre, STZ-DM gurubu ile karşılaştırıldığında STZ-DM+ÇY gurubunda açlık kan glikoz düzeyinin anlamlı bir şekilde azaldığı (p<0.001), vücut ağırlığının anlamlı (p<0.001) bir şekilde arttığı saptandı. STZ-DM grubuna göre STZ-DM+ÇY grubunun serumunda MDA-TBA düzeyinin anlamlı bir şekilde azaldığı (p<0.001) saptandı. Elde ettiğimiz sonuçlara göre K grubu ile karşılaştırıldığında STZ-DM grubunda vitamin K2, vitamin D3, α-tokoferol, retinol, kolesterol ve sterol miktarı önemli düzeyde (p<0.001) artmıştır. Ayrıca serumda STZ-DM grubuna göre STZ-DM+ÇY grubunda vitamin K2, α-tokoferol ve sterol düzeyinin anlamlı bir şekilde (p<0.001) azaldığı, vitamin D3, retinol, vitamin K1 ve kolesterol düzeyinin anlamlı bir şekilde (p<0.001) arttığı saptandı. Elde ettiğimiz verilere kontrol göre STZ-DM grubunda stearik, oleik ve linoleik asit düzeyinin anlamlı (p<0.001) düzeyde arttığı tespit edildi. Ayrıca STZ-DM grubuna göre STZ-DM+ÇY grubunda stearik, oleik ve linoleik asit düzeyinin anlamlı düzeyde (p<0.001) azaldığı, palmitoleik asit düzeyinin anlamlı düzeyde (p<0.001) arttığı belirlendi.Bu çalışma, çam yağının hipoglisemik potansiyele sahip olduğunu ve ayrıca serumda bazı biyokimyasal parametreler üzerinde olumlu etki gösterdiği tespit edildi.

Effect of Pine Oil on Antihyperglycemic and Some Biochemical Parameters in serum of Streptozotocin Induced Tip-2 Diabetic rats

The present study was designed to evaluate the effect of pine oil on hyperglycemia and some biochemical parameters in streptozotocin-induced type- 2 diabetic rats. Rats were divided into three groups: control (C) diabetes (STZ-DM), diabetes+pine oil (STZ-DM+PO) grups. Diabetes induced in rats by a single intraperitoneal injection of streptozotocin (45 mg/kg). 1 ml/kg the dose pine oil was intraperitoneally injected twice in a week to the diabetes+pine oil (STZ-DM+PO), plus 1 g/L dose of pure pine oil was added to drinking water of these group. According to our analysis results; fasting blood glucose levels were significantly decreased (p<0.001) in STZ-DM+PO group when compared to STZ-DM group. In addition, body weight was found to increase significantly (p<0.001) in STZ-DM+PO compared to STZ-DM group. MDA-TBA levels in serum decreased significantly (p<0.001) in STZ-DM+PO group in comparison to STZ-DM group. While compared to control group; vitamin K2, vitamin D3, α-tocopherol, retinol, cholesterol and sterols level were significantly (p<0.001) increased in STZ-DM group. Also when compared to STZ-DM group; vitamin K2, α-tocopherol and sterols levels decreased significantly (p<0.001), vitamin D3, retinol, vitamin Kand cholesterol levels increased significantly (p<0.001) in the sera of STZ-DM+PO group. According to our results; stearic acid, oleic acid, linoleic acid levels were significantly (p<0.001) increased in control groups and also stearic acid, oleic acid, linoleic acid levels decreased significantly (p<0.001), palmitoleic acid level increased significantly (p<0.001) in the serum of STZ-DM+PO group when both of the groups compared to STZ-DM group.This study demonstrates that pine oil possesses hypoglycemic potentials in STZ induced diabetic rats and concluded that pine oil has positive effect on some biochemical parameters in the serum.

___

  • American Diabetes Association. (2012). Diagnosis and classification of diabetes mellitus. Diabetes Care, 35, 64−71.
  • Wild, S., Roglic, G., Green, A., Sicree, R., King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047-1053.
  • Türker, M., Süzmeçelik, E. (2010). Türkiye ve dünyada rakamlarla diyabet. Mised, 23-24: 62Aslan, M., Orhan, N. (2010). Diyabet tedavisinde kullanılan bitkisel ürünler ve gıda destekleri. Mised, 23-24: 27-38.
  • Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., Devasagayam, T.P.A. (2007). Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 40, 163– 1
  • Tuzlacı, E., Erol, M.K. (1999). Turkish folk medicinal plants. Part II: Eğridir (Isparta). Fitoterapia, 70, 593–610.
  • Kızılarslan, Ç., Sevgi, E. (2013). Ethnobotanical uses of genus Pinus L. (Pinaceae) in Turkey. Indian Journal of Traditional Knowledge, 12(2), 209-220.
  • Baytop, T. (2001). Therapy with Medicinal Plants in Turkey (Past and Present). 1st ed, Istanbul University, Istanbul, 178–249.
  • Gülçin, I., Büyükokuroglu, M.E., Oktay, M,, Küfrevioglu, O.I. (2003). Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. Journal of Ethnopharmacology, 86, 51–58.
  • Li, W,. Chen, Y,. Wang, X,. Qu., S. (1991). Pharmacological studies on the volatile oil isolated from the leaves of Pinus pumila (Pall.) Regel. Zhongguo Zhong Yao Za Zhi, 16, 172– 1
  • Moussa, S.A. (2008). Oxidative stress in diabetes mellitus. Romanian J. Biophys., 18(3), 225-2
  • Lipinski, B. Pathophysiology of oxidative stress in diabetes mellitus. (2001). Journal of Diabetes and its Complications, 15, 203-210.
  • Tatsuki, R., Satoh, K., Yamamoto, A., Hoshi, K., Ichihara, K. (1997). Lipid peroxidation in the pancreas and other organs in streptozotocin diabetic rats. Jpn. J. Pharmacol., 75, 2672
  • Gago-Dominguez, M., Jiang, X., Esteban Castelao, J. (2007). Lipid peroxidation and the protective effect of physical exercise on breast cancer. Med. Hypotheses, 68(5), 1138-1143.
  • Reed, T.T. (2011). Lipid peroxidation and neurodegenerative disease. Free Radical Biology and Medicine, 51(7), 1302-1319.
  • Matsunami, T., Sato, Y., Sato, T., Yukawa, M. (2010). Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure. Physiol. Res., 59, 97-104.
  • Ghasemzadeh, A, Jaafar, H.Z.E, Rahmat, A. (2010). Antioxidant activities, total pPhenolics and flavonoids cContent in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules, 15, 4324-4333.
  • Saleem, A., Kivelä, H., Pihlaja, K. (2003). Antioxidant activity of pine bark constituents. Z Naturforsch C, 58(5-6), 351-354.
  • Yeşil-Çeliktaş, Ö., Ganzera, M., Akgün, İ., Sevimli, C., Korkmaz, K.S., Bedir, E. (2009). Determination of polyphenolic constituents and biological activities of bark extracts from different Pinus species. J. Sci. Food Agric., 89, 1339–1345.
  • Ramesh, B., Pugalendi, K.V. (2006). Antioxidant role of umbelliferone in STZ-diabetic rats. Life Sciences, 79, 306–310.
  • Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., Ribes, G. (1998). Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 47(2), 224-229.
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1), 265-275.
  • Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95(2), 351-358.
  • Hara, A. Radin, N.S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem., 90, 420-426.
  • Christie, W.W. (1990). Gas chromatography and lipids. The Oil Pres, Glaskow.
  • Duncan, B.D. (1957). Multiple range test for correlated and heteroscedastic means. Biometrics, 13, 359-364.
  • Toeller, M. (1994). Alpha-Glucosidase inhibitors in diabetes: efficacy in NIDDM subjects. Eur. J. Clin. Invest., 24, 31-35.
  • Clissold, S.P., Edwards, C. (1988). Acarbose. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs, 35(3), 214-2
  • Kim, Y.M., Wang, M.H., Rhee, H.I. (2004). A novel a-glucosidase inhibitor from pine bark. Carbohydrate Research, 339, 715–717.
  • Kim, Y.M., Jeong, Y.K., Wang, M.H., Lee, W.Y., Rhee, H.I. (2005). Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21, 756-761. El-Zein, O., Kreydiyyeh, S.I. (2011). Pine bark extract inhibits glucose transport in enterocytes via mitogen-activated kinase and phosphoinositol 3-kinase. Nutrition, 27, 707– 7
  • Thilagam, E., Parimaladevi, B., Kumarappan, C., Mandal, S.C. (2013). α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. Journal of Acupuncture and Meridian Studies, 6, 24-30.
  • Zhu, K., Nie, S., Li, C., Lin, S., Xing, M., Li, W., Gong, D., Xie, M. (2013). A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia. International Journal of Biological Macromolecules, 57, 142-150.
  • Cheng, D., Liang, B., Li, Y. (2013). Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. Biomed Res. Int., 2013; 2013: 1-8.
  • Ramesh, B., Viswanathan, P., Pugalendi, K.V. (2007) . Protective effect of umbelliferone on membranous fatty acid composition in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 566, 231-239.
  • Li, X.M. (2007). Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. International Journal of Biological Macromolecules, 40, 461–465.
  • Robertson, R.P., Harmon, J., Tran, P.O., Poitout, V. (2004). Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type-2 diabetes. Diabetes, 53, 119-124.
  • Kaneto, H., Nakatani, Y., Kawamori, D., Miyatsuka, T., Matsuoka, T.A. (2004). Involvement of oxidative stress and the JNK pathway in glucose toxicity. The Review of Diabetic Studies, 1(4), 165-174.
  • Feillet-Coudray, C., Rock, E., Coudray, C., Grzelkowska, K., Azais-Braesco, V., Dardevet, D., Mazur, A. (1998). Lipid peroxidation and antioxidant status in experimental diabetes. Clin Chim Acta, 284, 31-43.
  • Akkaya, H., Çelik, S. (2010). Sıçanlarda diyabet öncesi ve sonrası oksidan-antioksidan durum. F.Ü. Sağ. Bil.Vet.Derg., 24 (1), 5-10.
  • Soon, Y.Y., Tan, B.K. (2002). Evaluation of the hypoglycemic and anti-oxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singap. Med. J., 43, 77-85.
  • Ku, C.S., Jang, J.P., Mun, S.P. (2007). Exploitation of polyphenol-rich pine barks for potent antioxidant activity. Journal of Wood Science, 53(6), 524-528.
  • Jia, X.Y., Zhang, Q.A., Zhang, Z.Q., Wanga, Y., Yuan, J.F., Wang, H.Y., Zhao, D. (2011). Hepatoprotective effects of almond oil against carbon tetrachloride induced liver injury in rats. Food Chemistry, 125, 673–678.
  • Karthikesan, K., Pari, L., Menon, V.P. (2010). Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen. Physiol. Biophys., 29, 23–30.
  • Saravanan, G., Ponmurugan, P. (2011). Ameliorative potential of S-allyl cysteine on oxidative stress in STZ induced diabetic rats. Chemico-Biological Interactions, 189, 100-106. Ruiz-Gutierrez, V., Stiefel, P., Villar, J., García-Donas, M.A., Acosta, D., Carneado, J. (1993). Cell membrane fatty acid composition in type 1 (insülin dependent) diabetic patients: Relationship with sodium transport abnormalities and metabolic control. Diabetologia, 36, 850–856.
  • Srinivasan, S., Pari, L. (2013). Antihyperlipidemic effect of diosmin: A citrus flavonoid on lipid metabolism in experimental diabetic rats. Journal of functional foods, 5, 484-492.
  • Ramkumar, K.M., Vanitha, P., Uma, C., Suganya, N., Bhakkiyalakshmi, E., Sujatha, J. (2011). Antidiabetic activity of alcoholic stem extract of Gymnema montanum in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 49, 3390-3394.
  • Ntambi, J.M., Miyazaki, M. (2004). Regulation of stearoly-CoA desaturases and role in metabolism. Progress in Lipid Research, 43, 91–94.
  • Beulens, J.W., van der A.D.L., Grobbee, D.E., Sluijs, I., Spijkerman, A.M., van der Schouw, Y.T. (2010). Dietary phylloquinone and menaquinones intakes and risk of type-2 diabetes. Diabetes Care, 33(8), 1699-1705.
  • İyidir, Ö.T., Altınova, A.E. (2012) . Vitamin D ve diabetes mellitus. Turk Jem., 16, 89-94. Miyazaki, H., Takitani, K., Koh, M., Takaya, R., Yoden, A., Tamai, H. (2013). αTocopherol status and expression of α-tocopherol transfer protein in type-2 diabetic GotoKakizaki rats. J. Nutr. Sci. Vitaminol (Tokyo), 59(1), 64-68.
  • Hozumi, M., Murata, T., Morinobu, T., Manago, M., Kuno, T., Tokuda, M., Konishi, K., Mingci, Z., Tamai, H. (1998). Plasma beta-carotene, retinol, and alpha-tocopherol levels in relation to glycemic control of children with insulin-dependent diabetes mellitus. J. Nutr. Sci. Vitaminol (Tokyo), 44(1), 1-9.
  • Krempf, M., Ranganathan, S., Ritz, P., Morin, M., Charbonnel, B. (1991). Plasma vitamin A and E in type 1 (insulin-dependent) and type 2 (non-insulin-dependent) adult diabetic patients. Int. J. Vitam. Nutr. Res., 61, 38-42.
  • Kouchak, A., Djalali, M., Eshraghian, M., Saedisomeolia, A., Djazayery, A., Hajianfar, H. (2011). The effect of Omega-3 fatty acids on serum paraoxonase activity, vitamins A, E, and C in type-2 diabetic patients. J. Res. Med. Sci., 16(7), 878-884.
  • Xiao, X., Song, B.L. (2013). SREBP: a novel therapeutic target. Acta Biochim Biophys Sin (Shanghai), 45, 2–10.
  • Cagen, L.M., Deng, X., Wilcox, H.G., Park, E.A., Raghow, R., Elam, M.B. (2005). Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NF-Y cis-acting elements. Biochem. J., 85, 207–216.
  • Berger, A., Jones, P.J., Abumweis, S.S. (2004). Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis., 3:5, 1-19.
  • Scoggan, K.A., Gruber, H., Chen, Q., Plouffe, L.J., Lefebvre, J.M., Wang, B., Bertinato, J., L'Abbé, M.R., Hayward, S., Ratnayake, W.M. (2009). Increased incorporation of dietary plant sterols and cholesterol correlates with decreased expression of hepatic and intestinal Abcg5 and Abcg8 in diabetic BB rats. Journal of Nutritional Biochemistry, 20, 177–186.