Fermentatif Organik Asit Üretimi ve Ayrılması

Anaerobik çürütme işleminin, aerobik işlemlere göre, metan formunda enerji üretimi ve yüksek organik yük uygulanabilirliği gibi çeşitli avantajları vardır. Düşük kalorifik değeri ve depolama zorlukları gibi sebeplerden dolayı  metan üretimi yerine değerli fermentasyon ara ürünlerinin üretimi son zamanlarda yoğun ilgi görmeye başlamıştır. Anaerobik fermentasyon ile üretilen organik asitler; solvent ekstraksiyonu, kimyasal çöktürme, adsorpsiyon ve elektrodiyaliz gibi ayırma yöntemleri kullanılarak ayrılabilir ve geri kazanılabilir.  Kısa-zincirli uçucu yağ asitleri, değişik pH değerlerinde yüksek çözünürlük gösterdiklerinden, kimyasal çöktürme ile ayrılmaları  uygun değildir. Solvent ekstraksiyonu organik asitlerin ayırılması için uygundur, fakat işlem sonucu yüksek kirlilikte atık oluşmaktadır. Adsorpsiyon prosesleri, diğer ayırma yöntemlerine göre daha pahalı, verimsiz ve daha az seçicidir.  Membran prosesi olan elekrodiyaliz, organik asit ayırmak için en ümit verici yöntem olarak gözükmektedir. Fakat, elektrodiyaliz işlemlerinde karşılaşılan kutuplanma, membran kirlenmesi ve geri yayınım gibi problemlerin azaltılması  ve prosesin iyileştirilmesi için daha fazla araştırma yapılması gerekmektedir.

Fermentative Organic Acid Production and Separation

Anaerobic digestion processes offer several benefits over aerobic ones such as higher organic loading rates and energy production in the form of methane. Recently, production of valuable fermentation intermediates instead of methane has gained a significant interest due to low calorific value and storage difficulties of methane. Organic acids, which are produced via anaerobic fermentation, can be subsequently removed/recovered via separation processes such as solvent extraction, chemical precipitation, adsorption, and electrodialysis. Chemical precipitation is not feasible for the short-chain fatty acids due to their high solubility at varying pH values. Solvent extraction is feasible for organic acid removal, however yields highly polluted waste. Adsorption processes are expensive, non-specific and not as efficient as other separation techniques. Membrane processes such as electrodialysis seem to be the most promising separation technique for the organic acid removal, however, more research needs to be conducted on the optimization of electrodialytic processes to reduce problems such as polarization, membrane fouling, and back diffusion.

___

  • Pavlostathis, S.G.,Giraldo-Gomez, E.(1991). Kinetics of Anaerobic Treatment. Water
  • Science and Technology, 24, 35-59. Batstone, D.J.,Keller, J.,Angelidaki, I.,Kalyuzhnyi, S.V.,Pavlostathis, S.G.,Rozzi, A.,Sanders, W.T.M.,Siegrist, H.,Vavilin, V.A., Anaerobic Digestion Model No. 1 (ADM1), in: I. Publishing, (Ed.), IWA Task Group for Mathematical Modelling of Anaerobic Wastewater Processes, London, UK, 2002.
  • Yang, S.-T.,Huang, H.,Tay, A.,Qin, W.,Guzman, L.D.,San Nicolas, E.C. Extractive Fermentation for the Production of Carboxylic Acidsin: Y. Shang-Tian, (Ed.), Bioprocessing for Value-Added Products from Renewable Resources, Elsevier, Amsterdam, 2007, pp. 421
  • Zoetemeyer, R.J.,Matthijsen, A.J.C.M.,Cohen, A.,Boelhouwer, C.(1982). Product inhibition in the acid forming stage of the anaerobic digestion process. Water Res., 16, 633
  • Pind, P.F.,Angelidaki, I.,Ahring, B.K.(2003). Dynamics of the anaerobic process: Effects of volatile fatty acids. Biotechnol. Bioeng., 82, 791-801.
  • Bazinet, L.(2005). Electrodialytic phenomena and their applications in the dairy industry:
  • A review (vol 44, pg 525, 2004). Critical Reviews in Food Science and Nutrition, 45, 307
  • Saito, T.,Yoshino, Y.,Kawanabe, H.,Sasaki, M.,Goto, M.(2009). Adsorptive Removal of
  • Organic Acids and Furans from Hydrothermal Treatment Process of Biomass. Sep. Sci. Technol., 44, 2761-2773.
  • Yang, S.T.,Huang, H.,Tay, A.,Qin, W.,De Guzman, L.,San Nicolas, E.C. Chapter 16: Extractive fermentation for the production of carboxylic acidsin: S.-t. Yang, (Ed.), Bioprocessing for value-added products from reneawable resources: New technologies and applications, Elsevier B.V., The Netherlands, 2007.
  • McCarty, P.L.(2001). The development of anaerobic treatment and its future. Water
  • Science and Technology, 44, 149-156. Rittmann, B.E.,McCarty, P.L. (2001). Environmental Biotechnology: Principles and Applications McGraw Hill. NewYork.126
  • Ferry, J. (1993). Methanogenesis: Ecology, physiology, biochemistry and genetics.
  • Chapman and Hall. NewYork, NY Dogan, E.,Demirer, G.N.(2009). Volatile Fatty Acid Production from Organic Fraction of Municipal Solid Waste Through Anaerobic Acidogenic Digestion. Environ. Eng. Sci., 26, 1450.
  • Verstraete, W.,Vandevivere, P.(1999). New and broader applications of anaerobic digestion. Critical Reviews in Environmental Science and Technology, 29, 151-173.
  • Jagadabhi, P.S.,Kaparaju, P.,Rintala, J.(2010). Effect of micro-aeration and leachate replacement on COD solubilization and VFA production during mono-digestion of grass- silage in one-stage leach-bed reactors. Bioresource Technology, 101, 2818-2824.
  • Bouallagui, H.,Touhami, Y.,Ben Cheikh, R.,Hamdi, M.(2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40, 989-995.
  • Lim, S.J.,Choi, D.W.,Lee, W.G.,Kwon, S.,Chang, H.N.(2000). Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess and Biosystems Engineering, 22, 543-545.
  • Ntaikou, I.,Kourmentza, C.,Koutrouli, E.C.,Stamatelatou, K.,Zampraka, A.,Kornaros, M.,Lyberatos, G.(2009). Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresource Technology, 100, 3724-3730.
  • Freguia, S.,Teh, E.H.,Boon, N.,Leung, K.M.,Keller, J.,Rabaey, K.(2010). Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 101, 1233-1238.
  • Kurzrock, T.,Weuster-Botz, D.(2010). Recovery of succinic acid from fermentation broth. Biotechnol. Lett., 32, 331-339.
  • Li, Q.,Wang, D.,Wu, Y.,Li, W.L.,Zhang, Y.J.,Xing, J.M.,Su, Z.G.(2010). One step recovery of succinic acid from fermentation broths by crystallization. Separation and Purification Technology, 72, 294-300.
  • Kertes, A.S.,King, C.J.(1986). Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng., 28, 269-282.
  • Fu, W.,Mathews, A.P.(2005). Two-stage fermentation process for the production of calcium magnesium acetate and propionate road deicers. Enzyme Microb. Technol., 36, 953
  • Dionysiou, D.D.,Tsianou, M.,Botsaris, G.D.(2000). Investigation of the conditions for the production of calcium magnesium acetate (CMA) road deicer in an extractive crystallization process. Cryst. Res. Technol., 35, 1035-1049.
  • Hong, Y.K.,Hong, W.H.,Han, D.H.(2001). Application of Reactive Extraction to
  • Recovery of Carboxylic Acids. Biotechnology Bioprocess Engineering, 6, 286-294. Malmary, G.,Faizal, M.,Albet, J.,Molinier, J.(1997). Liquid-liquid equilibria of acetic, formic, and oxalic acids between water and tributyl phosphate plus dodecane. J. Chem. Eng. Data, 42, 985-987.
  • Alkaya, E.,Kaptan, S.,Ozkan, L.,Uludag-Demirer, S.,Demirer, G.N.(2009). Recovery of acids from anaerobic acidification broth by liquid-liquid extraction. Chemosphere, 77, 1137
  • Mostafa, N.A.(1999). Production and recovery of volatile fatty acids from fermentation broth. Energy Conversion and Management, 40, 1543-1553.
  • Eggeman, T.,Verser, D.(2005). Recovery of organic acids from fermentation broths.
  • Appl. Biochem. Biotechnol., 121, 605-618. Freitas, A.F.,Mendes, M.F.,Coelho, G.L.V.(2007). Thermodynamic study of fatty acids adsorption on different adsorbents. The Journal of Chemical Thermodynamics, 39, 1027
  • Garcia, A.A.(1991). Strategies for the recovery of chemicals from fermentation - A review of the use of polymeric adsorbents. . Biotechnol. Prog., 7, 33-42.
  • Hassan, M.A.,Shirai, Y.,Umeki, H.,Yamazumi, H.,Jin, S.,Yamamoto, S.,Karim, M.I.A.,Nakanishi, K.,Hashimoto, K.(1997). Acetic acid separation from anaerobically treated palm oil mill effluent by ion exchange resins for the production of polyhydroxyalkanoate by
  • Alcaligenes eutrophus. Biosci. Biotechnol. Biochem., 61, 1465-1468.
  • Huang, C.,Xu, T.,Zhang, Y.,Xue, Y.,Chen, G.(2007). Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. Journal of Membrane Science, 288, 1-12.
  • Xu, T.W.,Huang, C.H.(2008). Electrodialysis-Based Separation Technologies: A
  • Critical Review. Aiche J., 54, 3147-3159.
  • Chukwu, U.N.,Cheryan, M.(1999). Electrodialysis of acetate fermentation broths. Appl.
  • Biochem. Biotechnol., 77-9, 485-499. Boyaval, P.,Seta, J.,Gavach, C.(1993). Concentrated propionic-acid production by electrodialysis. Enzyme Microb. Technol., 15, 683-686.
  • Weier, A.J.,Glatz, B.A.,Glatz, C.E.(1992). Recovery of propionic and acetic-acids from fermentation broth by electrodialysis Biotechnol. Prog., 8, 479-485.
  • Vertova, A.,Aricci, G.,Rondinini, S.,Miglio, R.,Carnelli, L.,D'Olimpio, P.(2009).
  • Electrodialytic recovery of light carboxylic acids from industrial aqueous wastes. J. Appl. Electrochem., 39, 2051-2059.
  • Wang, Q.H.,Cheng, G.S.,Sun, X.H.,Jin, B.(2006). Recovery of lactic acid from kitchen garbage fermentation broth by four-compartment configuration electrodialyzer. Process Biochemistry, 41, 152-158.
  • Wang, Z.X.,Luo, Y.B.,Yu, P.(2006). Recovery of organic acids from waste salt solutions derived from the manufacture of cyclohexanone by electrodialysis. Journal of Membrane Science, 280, 134-137.