Parmelia sulcata ve Hypogymnia tubulosa Aseton Özütlerinin Islatma Sıvılarından Elde Edilen İzolatlar Üzerine Antibakteriyel Etkileri

Deri endüstrisinde tuzda, tuzlanmış ve ıslatılmış büyükbaş ve küçükbaş hayvan derilerinde, ve ıslatma sıvılarında çok fazla sayıda halofil veya halofil olmayan bakterilerin bulunduğu bilinmektedir. Bu bakteriler bitmiş deri ürününde geri dönüşümü olmayan kusurlara neden olan birkaç hidrolitik enzime sahiptir. Islatma işleminde bakteri popülasyonu kontrol etmek için antimikrobiyal ajanların kullanılmasına rağmen, bu ajanların yetersiz uygulanmalarına veya ıslatma sıvılarında antimikrobiyallere dirençli bakteri suşlarının bulunmasına bağlı olarak yeterli etkinliğe sahip değillerdir.Bu bağlamda, bakteri popülasyonunu kontrol etmek için alternatif ajanlar veya stratejiler yardımcı olabilir. Bu amaçla, bir önceki çalışmada farklı tabakhanelerden toplanan ıslatma çözeltisi örneklerinden izole edilen Bacillus toyonensis, B. mojavensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereus ve B. licheniformis test edilmiştir ve Parmelia sulcata ve Hypogymnia tubulosa'nın aseton özütlerinin antibakteriyel etkileri bu izolatlar üzerinde değerlendirilmiştir. İzolatların saf kültürleri, agar plakaları üzerinde koloni morfolojileri ve Gram boyamaları ile doğrulanmıştır. Ayrıca, Parmelia sulcata ve Hypogymnia tubulosa'nın aseton özütlerinin bu izolatlar üzerine antibakteriyel aktiviteleri, 240, 120, 60 ve 30 μg/ml konsantrasyonlarında test edilmiştir. Hypogymnia tubulosa özütlerinin Parmelia sulcata özütlerine kıyasla test edilen izolatlar üzerinde daha başarılı olduğu bulunmuştur. Bu test edilen liken türleri, ıslatma işleminde bakteri popülasyonunu kontrol etmek için ve ayrıca ileriki tabaklama işlemlerinde bu bakterilerin gelişimine bağlı olarak görülebilecek deri üzerindeki potansiyel kusurları engellemek amacıyla kullanabilir.

Antibacterial Effects of Parmelia sulcata and Hypogymnia tubulosa Acetone Extracts Against Isolates From Soak Liquors

It is well known that there are halophilic or non-halophilic bacteria in salt, soak liquors, salted and soaked hides/skins in highnumbers in the leather industry. These bacteria have several hydrolytic enzymes which cause irreversible defects on finishedleather product. Although antimicrobial agents are utilized to control the bacterial population in the soaking process, theseagents have not sufficient efficacy due to inadequate application of these agents or the presence of antimicrobial-resistantbacterial strains in soak liquors. In this respect, alternative agents or strategies may be helpful for controlling the bacterialpopulation. For this purpose, Bacillus toyonensis, B. mojavensis, B. subtilis, B. amyloliquefaciens, B. velezensis, B. cereusand B. licheniformis, which were isolated from soak liquor samples of different tanneries in the previous study, were tested inthe present study and the antibacterial effects of acetone extracts of Parmelia sulcata and Hypogymnia tubulosa wereevaluated on these isolates. The pure cultures of the isolates were confirmed by colony morphologies on agar plates andGram staining. Moreover, antibacterial activities for acetone extracts of Parmelia sulcata and Hypogymnia tubulosa againstthese isolates were tested at certain concentrations of 240, 120, 60 and 30 μg/ml. Hypogymnia tubulosa extracts were foundto be more successful in comparison to the extracts of Parmelia sulcata on tested isolates. These tested lichen species can beused to control the population of bacteria in the soaking process and also to prevent potential defects on the hide/skin thatmay be seen in subsequent tanning processes due to the development of these bacteria.

___

  • [1] Dahl, S. (1956). Prevention of microbiological deterioration of leather. Leather Chem. Ass., 51, 103- 117.
  • [2] Birbir, M. and Ilgaz, A. (1996). Isolation and identification of bacteria adversely affecting hide and leather quality. Journal of the Society of Leather Technologists and Chemists, 80, 147-153.
  • [3] Birbir, M., Calli, B., Mertoglu, B., Elevi Bardavid, R., Oren, A., Ogmen, M.N. and Ogan, A. (2007). Extremely halophilic archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacık Salterns. World Journal of Microbiology and Biotechnology, 23, 309-316.
  • [4] Bailey, D.G. (2003). The preservation of hides and skins. The Journal of the American Leather Chemists Association, 98, 308- 319.
  • [5] Kallenberger, E.W. (1984). Halophilic bacteria in brine curing. The Journal of the American Leather Chemists Association, 79, 104-114.
  • [6] Bailey, D.G. and Birbir, M. (1996). The impact of halophilic organisms on the grain quality of brine cured hides. The Journal American Leather Chemists Association, 91 47-51.
  • [7] Caglayan, P., Birbir, M., Sánchez-Porro, C., and Ventosa, A. (2018). Detection of industrially potential enzymes of moderately halophilic bacteria on salted goat skins. Turkish Journal of Biochemistry, 43(3), 312-322.
  • [8] Haines, M.B. (1984). Quality rawstock. The Journal of the American Leather Chemists Association, 4, 164-173.
  • [9] Birbir, M. and Bailey, D.G. (2000). Controlling the growth of extremely halophilic bacteria on brine cured cattle hides. Journal of the Society of Leather Technologists and Chemists, 84 (5), 201-204.
  • [10] Bailey, D.G. and Birbir, M. (1993). A study of the extremely halophilic microorganisms found on commercially brine-cured cattle hides. The Journal of the American Leather Chemists Association, 88, 285- 293.
  • [11] Puvanakrishnan, R., Sivasubramanian, S., and Hemalatha, T. (2019). Microbes and Enzymes: Basics and Applied. MJP Publisher.
  • [12] Vivian, G.W. (1969). The preservation of hides and skins against bacterial damage. The Journal of the American Leather Chemists Association, 64 (10) 489- 500.
  • [13] Weiss, E.F. and Thornton, R.L. (1984). Growth and control of microbiological activity during hide curing process, Buckman Laboratories Inc., 18.
  • [14] Birbir, Y., Uğur, G., and Birbir, M. (2008). Inactivation of bacterial population in hide-soak liquors via direct electric current. Journal of Electrostatics, 66 (7-8), 355-360.
  • [15] Türkan, M.F., Aslan, A., Yapici, A.N., Yapici, B.M., and Bilgi, S.T. (2013). Assessment of antimicrobial activity of natural leathers treated with Pseudevernia furfuracea (L.) Zopf extracts. Tekstil ve Konfeksiyon, 23 (2), 176-180.
  • [16] Nash, III TH. (2008). Lichen Biology. Cambridge University Press.
  • [17] Molnár, K.and Farkas E. (2010). Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung C., 65 (3-4), 157-173.
  • [18] Paudel, B., Bhattarai, H. D., Lee, J. S., Hong, S. G., Shin, H. W., and Yim, J. H. (2008). Antibacterial potential of Antarctic lichens against human pathogenic Gram‐positive bacteria. Phytotherapy Research, 22(9), 1269-1271.
  • [19] Çobanoğlu, G., Sesal, C., Gökmen, B., and Çakar, S. (2010). Evaluation of the antimicrobial properties of some lichens. South Western Journal of Horticulture, 1(2), 153-158.
  • [20] Ranković, B., Ranković, D., Kosanić, M., and Marić, D. (2010). Antioxidant and antimicrobial properties of the lichens Anaptychya ciliaris, Nephroma parile, Ochrolechia tartarea and Parmelia centrifuga. Central European Journal of Biology, 5(5), 649-655.
  • [21] Sweidan, A., Chollet-Krugler, M., Sauvager, A., Van de Weghe, P., Chokr, A., Bonnaure-Mallet, M. and Bousarghin, L. (2017). Antibacterial activities of natural lichen compounds against Streptococcus gordonii and Porphyromonas gingivalis. Fitoterapia, 121, 164-169.
  • [22] Berber, D. (2020). Antibacterial activities of lichen derived extracts against different Bacillus species from soak liquor samples. Journal of the American Leather Chemists Association, 115(03), 96- 104.
  • [23] Wirth, V., Die Flechten Baden-Württembergs: Teil 1, Stuttgart, Germany, Eugen Ulmer GmbH and Co. 1995.
  • [24] Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W. and Wolseley, P.A. The Lichens of Great Britain and Ireland. The British Lichen Society, London, UK. 2009.
  • [25] Gökalsın, B., Berber, D., Özyiğitoğlu, G. Ç., Yeşilada, E., and Sesal, N.C.; Quorum Sensing Attenuation Properties of Ethnobotanically Valuable Lichens against Pseudomonas aeruginosa. Plant Biosyst. 1–13, 2019.
  • [26] Birbir, M., Ogan, A., Calli, B. and Mertoğlu, B. (2004). Enzymatic characteristics of extremely halophilic archaeal community in Tuzkoy Salt Mine, Turkey. World Journal of Microbiology and Biotechnology, 20, 613-621.
  • [27] Birbir, M. (1997). Investigation of salted-cured France and Russian hides for halophilic bacteria. Journal of Turkish Microbiological Society, 27, 68-73.
  • [28] Birbir, M., Kallenberger, W., Ilgaz, A. and Bailey, G. (1996). Halophilic bacteria isolated from brine cured cattle hides. Journal of the Society of Leather Technologists and Chemists, 80, 87-90.
  • [29] Berber, D. and Birbir, M. (2010). Examination of bacterial populations in salt, salted hides, soaked hides and soak liquors. The Journal of the American Leather Chemists Association, 105 (10), 320-326.
  • [30] Aslan, E., and Birbir, M. (2011). Examination of Gram positive bacteria on salt-pack cured hides. The Journal of the American Leather Chemists Association, 106 (12), 372-380.
  • [31] Aslan, E. and Birbir, M. (2012). Examination of Gram-Negative bacteria on salt-pack cured hides. The Journal of the American Leather Chemists Association, 4 (107), 106-115.
  • [32] Akpolat, C., Ventosa, A., Birbir, M., Sánchez- Porro, C. and Caglayan, P. (2015). Molecular identification of moderately halophilic bacteria and extremely halophilic archaea isolated from salted sheepskins containing red and yellow discoloratios, The Journal of the American Leather Chemists Association, 110, 211-220.
  • [33] Caglayan, P., Birbir, M., Sanchez-Porro, C. and Ventosa, A. (2017). Screening of industrially important enzymes produced by moderately halophilic bacteria isolated from salted sheepskins of diverse origin. The Journal of the American Leather Chemists Association, 112 (6), 207-216.
  • [34] Ulusoy, K., and Birbir, M. (2015). Identification and metabolic activities of bacterial species belonging to the Enterobacteriaceae on salted cattle hides and sheep skins. The Journal of the American Leather Chemists Association, 110, 86–199.
  • [35] Birbir, M., Yazici, E., Caglayan, P., Birbir, Y., and Goebel, R.A. (2019). Elimination of antibiotic resistant Enterobacteriaceae via combined application of direct electric current, alternating electric current and 2-thiocyanomethylthio benzothiazole. Journal of the Society of Leather Technologists and Chemists, 103(2), 85-90.
  • [36] Berber, D., Birbir, M., and Hacioglu, H. (2010). Efficacy assessment of bactericide containing didecyldimethylammonium chloride on bacteria found in soak liquor at different exposure times. The Journal of the American Leather Chemists' Association, 105(11), 354-359.
  • [37] Veyselova, C., Birbir, M., and Berber, D. (2013). Minimal bactericidal concentration for a quaternary ammonium compound used in soak liquors. Journal of the Society of Leather Technologists and Chemists, 4(97), 166–171.
  • [38] Gulluce, M., Aslan, A., Sokmen, M., Sahin, F., Adiguzel, A., Agar, G, Sokmen, A. (2006). Screening the antioxidant and antimicrobial properties of the lichens Parmelia saxatilis, Platismatia glauca, Ramalina pollinaria, Ramalina polymorpha and Umbilicaria nylanderiana. Phytomedicine 13 (7), 515- 521.
  • [39] Rankovic, B., and Kosanic, M. (2012). Antimicrobial activities of different extracts of Lecanora atra, Lecanora muralis, Parmelia saxatilis, Parmelia sulcata and Parmeliopsis ambigua. Pak. J. Bot. 44:429-33.
  • [40] Çobanoğlu, G., Sesal, C., Açıkgöz, B., and Karaltı, I. (2016). Evaluation of antimicrobial activity of the lichens Physcia aipolia, Xanthoria parietina, Usnea florida, Usnea subfloridana and Melanohalea exasperata. Modern Phytomorphology, 10, 21-26.
  • [41] Mitrović T., Stamenković S., Cvetković V., Tošıć S, Stanković M., Radojević I., Stefanović O., Čomić L, Dačić D., Ćurčić M., and Marković S. (2011). Antioxidant, Antimicrobial and antiproliferative activities of five lichen species. International Journal of Molecular Sciences, 12, 5428- 5448.
  • [42] Kıran, F., Yıldız, A., and Osmanağaoğlu, Ö. (2013). Determination of antimicrobial properties of some lichen samples. Türk Mikrobiyoloji Cemiyeti Dergisi, 43 (3), 97-103. doi:10.5222/TMCD.2013.097
  • [43] Berber, D., Türkmenoğlu, İ., Birbir, M., and Sesal, N.C.; Efficacy of Usnea sp. Extracts in Preventing Biofilm Formation by Bacillus Species Isolated from Soaking Liquor Samples. 2020, in press.
  • [44] Altuner, E.M., Ceter, T., Demirkapı, D., Ozkay, K., Hayal, U., and Eser, G. (2011). Investigation on antimicrobial effects of some lichen species collected from Kastamonu region. Communications Faculty of Sciences University of Ankara Series C: Biology, 23 (1-2), 21-31.
  • [45] Cansaran-Duman, D., Cetin, D., Simsek, H., and Coplu, N. (2010). Antimicrobial activities of the lichens Hypogymnia vittata, Hypogymnia physodes and Hypogymnia tubulosa and HPLC analysis of their usnic acid content. Asian Journal of Chemistry, 22 (8), 6125.
  • [46] Rankovic, B., Misic, M., and Sukdolak, S. (2007). Evaluation of antimicrobial activity of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica. Микробиология, 76 (6), 817-821.
  • [47] Candan, M., Yılmaz, M., Tay, T., Erdem, M., and Türk, A.Ö. (2007). Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Zeitschrift für Naturforschung C, 62 (7-8), 619-621.