Investigation of Structural, Spectral, Biological Activity of Monohydrous Dihydrogen Phosphate Salt of Ciprofloxacin: Computational and Molecular Docking Study

Investigation of Structural, Spectral, Biological Activity of Monohydrous Dihydrogen Phosphate Salt of Ciprofloxacin: Computational and Molecular Docking Study

The present study describes the synthesis, spectroscopic and biological activity of Monohydrous Dihydrogen Phosphate Salt of Ciproflox-acin (MDPSC). The asymmetrical part of the unit cell contains one ciprofloxacin cation, one dihydrogen phosphate anion and one water molecule. The techniques used for the characterization are single crystal X-ray diffraction and spectroscopic method (IR, UV) and thermal analysis. The molecular structure was theoretically optimized using DFT/B3LYP/6-31G(d,p) methods for ground state, and compared with experimental values. Scaled theoretical vibrational frequencies are compared with experimental values. The UV-Vis results that experimen-tally obtained are compared with the calculated electronic properties such as HOMO and LUMO energies and the MEP are also investi-gated. The vibrational frequences has been studied by comparing the characteristic bands related to the functional groups of the compound and the ciprofloxacin. Thermal properties have been investigated with TGA. Biological study of the complex against Staphylococcus aer-ous, Escherichia coli, Candida Albicans, Bacillus Subtilis, Pseudomonas aeruginosa and Aspergillus Flavus showed very strong antibac-terial activity with MIC values ranging from 512 μg mL-1 to 1 μg mL-1. The optimized complex is docked to the 5J9B, 5BMM, 5HTG, 1ZUV, 4F0V and 4YNU.

___

  • [1] Sayin, K., Karakaş, D., Kariper, S.E., & Sayin, T.A. (2018). Computational study of some fluoroquinolones: Structural, spectral and docking investigations.Journal of Molecular Structure, 1156, 172-181.
  • [2] Lou, B., Boström, D., & Velaga, S.P. (2007). Monohydrous dihydrogen phosphate salts of norfloxacin and ciprofloxacin.Acta Crystallographica Section C: Crystal Structure Commu-nications, 63(12), o731-o733.
  • [3] Blokhina, S., Sharapova, A., Ol’khovich, M., & Perlovich, G. (2017). Sublimation thermodynamics of four fluoroqui-nolone antimicrobial compounds.Journal of Chemical Ther-modynamics, 105, 37-43.
  • [4] Sheldrick, G.M. (2008). A short history of SHELX.Acta crystallographica. Section A, Foundations and Advances,64(1), 112-122.
  • [5] Farrugia, L.J. (2012). WinGX and ORTEP for Windows: an update.Journal of Applied Crystallography, 45(4), 849-854.
  • [6] Macrae, C.F., Edgington, P.R., McCabe, P., Pidcock, E., Shields, G.P., Taylor, R., Towler, M., & Streek, J.V.D. (2006). Mercury: visualization and analysis of crystal structures.Journal of Applied Crystallography, 39(3), 453-457.
  • [7] Institute, C.a.L.S., Methods for dilution antimicrobial sus-ceptibility tests for bacteria that grow aerobically; approved standard. 2006: Wayne, PA: CLSI.
  • [8] Institute, C.a.L.S., Reference method for broth dilution an-tifungal susceptibility testing of yeasts; approved standard. 2002: Wayne, PA: CLSI.
  • [9] Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., & Petersson, G. (2009). Gaussian 09, revision a. 02, gaussian.Inc., Wallingford, CT, 200.
  • [10] Polishchuk, A.V., Karaseva, E.T., Emelina, T.B., Cramariuc, O., & Karasev, V.E. (2011). Polymorphism and intramolecu-lar proton transfer in fluoroquinolone compounds.Journal of Fluorescence, 21(6), 2117-22.
  • [11] Krygowski, T.M. (1993). Crystallographic studies of in-ter-and intramolecular interactions reflected in aromatic cha-racter of. pi.-electron systems.Journal of Chemical Informa-tion and Computer Sciences, 33(1), 70-78.
  • [12] Gece, G. (2008). The use of quantum chemical methods in corrosion inhibitor studies.Corrosion Science, 50(11), 2981-2992.
  • [13] Sahoo, S., Chakraborti, C.K., & Behera, P.K. (2012). Spect-roscopic investigations of a ciprofloxacin/hpmc mucoadhe-sive suspension.International Journal of Applied Pharma-ceutics, 4(3), 1-8.
  • [14] Sadeek, S.A. (2005). Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn (II), Co (II) and Fe (III) norfloxacin complexes.Journal of Molecular Struc-ture, 753(1-3), 1-12.
  • [15] Sadeek, S.A., Refat, M.S., & Hashem, H.A. (2006). Comp-lexation and thermogravimetric investigation on tin (II) and tin (IV) with norfloxacin as antibacterial agent.Journal of Coordination Chemistry, 59(7), 759-775.
  • [16] Zordok, W.A. (2014). Interaction of vanadium (IV) solva-tes (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: Spectroscopic, structure, thermal analy-ses, kinetics and biological evaluation (L= An, DMF, Py and Et3N).Spectrochimica Acta Part A: Molecular and Biomole-cular Spectroscopy, 129, 519-536.
  • [17] Acar, B., Yilmaz, I., Çalışkan, N., & Cukurovali, A. (2017). Experimental and theoretical studies of the molecular stru-cture of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid et-hyl ester.Journal of Molecular Structure, 1139, 130-136.
  • [18] O’Boyle, N.M., Tenderholt, A.L., & Langner, K.M. (2008). cclib: a library for package-independent computational che-mistry algorithms.Journal of Computational Chemistry,29(5), 839-45.
  • [19] Neugebauer, U., Szeghalmi, A., Schmitt, M., Kiefer, W., Popp, J., & Holzgrabe, U. (2005). Vibrational spectroscopic characterization of fluoroquinolones.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(7), 1505-17.
  • [20] Lambert, P. (2002). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa.Journal of the royal society of me-dicine, 95(Suppl 41), 22.
  • [21] Rapa, R.A., Islam, A., Monahan, L.G., Mutreja, A., Thom-son, N., Charles, I.G., Stokes, H.W., & Labbate, M. (2015). A genomic island integrated into recA of V ibrio cholerae con-tains a divergent recA and provides multi‐pathway protec-tion from DNA damage.Environmental microbiology, 17(4), 1090-1102.
  • [22] Tan, Z., Tan, F., Zhao, L., & Li, J. (2012). The synthesis, cha-racterization and application of ciprofloxacin complexes and its coordination with copper, manganese and zirconium ions.Journal of Crystallization Process and Technology, 2(02), 55.