TİCARİ ARAÇ TEKERLEK JANTININ SONLU ELEMANLAR YÖNTEMİYLE ANALİZİ VE TEST EDİLMESİ

Jantlar, statik ve dinamik kuvvetler altında değişken yüklere maruz kaldıkları için aracın emniyet bileşenidir. Tekerlek test standartlarına göre belirlenen yorulma testleri, tasarlanan tekerlek modellerine uygulanır. Radyal yorulma testi, dinamik yükler altında belirli devirlerden sonra çatlak arızalarının araştırıldığı yorulma testlerinden biridir. Test prosedürleri uzun süre alır ve bitmiş ürün için geçerlidir. Test sonuçlarına bağlı olarak tekerlek tasarımında yapılan değişiklikler, üretim sürecinin tekrar yapılmasını gerektirir. Bu tekrarlı süreç maliyeti arttırır. Testin sayısal modellenmesi, belirli bir tasarım üzerinde hızlı çözümler üretir. Böylece, sayısal modelleme nedeniyle döngüsel testlerin sayısı azaltılır. Bu nedenle, sayısal modelleme dolaylı olarak maliyeti düşürür. Bu çalışmada, ticari araç çelik jantlarındaki stres ve yer değiştirmenin analizi ile bilinen yükleme koşulları altında jant üzerindeki gerilimin belirlenmesi Ansys Workbench programında sonlu elemanlar modelleri oluşturularak geliştirilmiştir.

MODELING WITH FINITE ELEMENT ANALYSIS AND TESTING OF COMMERCIAL VEHICLE WHEELS

Wheels are safety component of vehicle because they are exposed to variable stresses under static and dynamic forces. Fatique tests are determined by wheel test standards applying to designed wheel models. Radial fatigue test is one of the fatigue tests in which crack failures are investigated after definite cycles under dynamic loads. Test procedures take long time and are applied to finished products. The modifications in wheel design depending on the test results, requires conduction of production process repeatedly. This repetitive process increases the cost and time of final production. Numerical modelling gives quick solutions during design stage. Thus, the number of cyclic tests is decreased because of numerical modelling. Therefore, numerical modelling indirectly decreases the cost. In this study, it is aimed to calculate the stress on the rim under the loading conditions by the analysis of stress and displacement in commercial vehicle steel wheels through the development of the finite element models using the Ansys Workbench finite element system.

___

  • 1. Riesner, M., Devrives, R. I., “Finite element analysis and structural optimization of vehicle wheels”, Society of Automotive Engineers [SAE] Technical Papers, 92(1): 830133, Sayfa 490-507, 1983.
  • 2. Carvalho, C. P., Voorwald, H. J. C., Lopes, C. E., “Automotive wheels an approach for structural analysis and fatigue life prediction”. Society of Automotive Engineers [SAE] Technical Papers, 2001-01-4053, 2001.
  • 3. Finzi, A., Carbonia, M., Berettaa, S., “Defects and in-service fatigue life of truck wheels”. Engineering Failure Analysis, 10, Sayfa 45-57, 2003.
  • 4. Firat, M., Kocabicak, U., “Analytical durability modeling and evaluation complementary techniques for physical testing of automotive components”. Engineering Failure Analysis 11, Sayfa 655–674, 2004.
  • 5. Stearns, J., Srivatsan, T. S., Gao, X., Lam, P. C., “Understanding the Influence of Pressure and Radial Loads on Stress and Displacement Response of a Rotating Body: The Automobile Wheel”. International Journal of Rotating Machinery, 60193, Sayfa 1-8, 2006.
  • 6. Topaç, M.M., Ercan, S., Kuralay, N.S., “Fatigue life prediction of a heavy vehicle steel wheel under radial loads by using finite element analysis”. Engineering Failure Analysis 20, Sayfa 67–79, 2014.
  • 7. Wana, X., Shana, Y., Liua, X., Wanga, H., Wang, J., “Simulation of biaxial wheel test and fatigue life estimation considering the influence of tire and wheel camber”. Advances in Engineering Software 92, Sayfa 57–64, 2016.
  • 8. Arıkan, S. “Sonlu Elemanlar Metodunun Mühendislikte Uygulamaları”, Makine Mühendisleri Odası, [http://arsiv.mmo.org.tr/pdf/10944.pdf] Erişim Tarihi: 15.03.2020.
  • 9. E.U.W.A., Test requirements for truck steel wheels, E S 3.11, Association of European Wheel Manufacturers, 2006.