HİBRİT İMALAT: EKLEMELİ İMALAT İLE TALAŞLI İMALAT YÖNTEMLERİNİN BİRLİKTE KULLANILABİLİRLİĞİNİN İNCELENMESİ

Eklemeli imalat teknolojileri son yıllarda makine parçası imalatında öne çıkmaya başlayan geleneksel olmayan üretim yöntemlerinden biridir. Geleneksel imalat yöntemlerinden olan talaşlı imalat yöntemlerinden farklı bir üretim sürecidir. Geleneksel talaşlı imalat yöntemlerinde, yarı mamul bir parça ile takım arasındaki çeşitli bağıl hareketler sonucu, malzemenin kesilip çıkarılması ile üretim gerçekleştirilir. Eklemeli imalat ile üretimde ise yazdırma malzemeleri katman katman birleştirilerek nihai ürün elde edilir. Makine parçası tasarımı, imalatı, malzeme karakterizasyonu, çalışma koşulları gibi parametreler göz önünde bulundurulduğunda bu üretim yöntemlerinin çeşitli avantaj ve dezavantajları ortaya çıkmaktadır. Bu aşamada bu üretim süreçlerinin birleştirilerek imalat teknolojilerinin geliştirilmesi ihtiyacı doğmaktadır.Bu çalışmada, literatürdeki eklemeli ve geleneksel imalat yöntemlerinin bir arada kullanıldığı “Hibrit İmalat” yaklaşımları incelenmiştir. Böyle bir entegre yaklaşım, üretim metotlarının avantajlarını bir araya getirirken sınırlamaların azaltılmasını sağlayacaktır.

___

  • ASTM F2792-12a. “Standard Terminology for Additive Manufacturing Technologies”.
  • Zhu Z, Dhokia V, Nassehi A, Newman ST, “A review of hybrid manufacturing processes state of the art and future perspectives”, International Journal of Computer Integrated Manufacturing. 26, 7, 596-615, 2013.
  • Jeng J, Lin M, “Mold fabrication and modification using hybrid processes of selective laser cladding and milling”, Journal of Materials Processing Technology, 110, 98–103, 2001.
  • Nowotny S, Muenster R, Scharek S, Beyer E, “Integrated laser cell for combined laser cladding and milling”, Assembly Automation, 30, 1, 36–38, 2010.
  • Choi DS, Lee S, Shin B, Whang K, Song Y, Park S, Jee H, “Development of a direct metal freeform fabrication technique using CO2 laser welding and milling technology”, Journal of Materials Processing Technology, 113, 1–3, 273–279, 2001.
  • González J, Rodríguez I, Prado-Cerqueira JL, Diéguez JL, Pereira A, “Additive manufacturing with GMAW welding and CMT technology”, Manufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30, 2017.
  • Song YA, Park S, “Experimental investigations into rapid prototyping of composites by novel hybrid deposition process”, Journal of Materials Processing Technology”, 171, 1, 35–40, 2006.
  • Kapil S, Legesse F, Kumar R, Karunakaran KP, “Hybrid Layered Manufacturing of Turbine Blades”, Materials Today: Proceedings, 4, 8, 8837–8847, 2017.
  • Suryakumar S, Karunakaran KP, Bernard A, Chandrasekhar U, Raghavender N, Sharma D, “Weld bead modeling and process optimization in Hybrid Layered Manufacturing”, CAD Computer Aided Design, 43, 4, 331–344, 2011.
  • Xinhong X, Haiou Z, Guilan W, Guoxian W, “Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of superalloy”, Robotics and Computer-Integrated Manufacturing, 26, 4, 291–295, 2010.
  • Lanzetta M, Cutkosky MR, “Shape deposition manufacturing of biologically inspired hierarchical microstructures”, CIRP Annals - Manufacturing Technology, 57, 1, 231–234, 2008.
  • Ruan J, Eiamsa-Ard K, Liou FW, “Automatic process planning and toolpath generation of a multiaxis hybrid manufacturing system”, Journal of Manufacturing Processes, 7, 1, 57–68, 2005.
  • Liou F, Slattery K, Kinsella M, Newkirk J, Chou H, Landers R, “Applications of a hybrid manufacturing process for fabrication of metallic structures”, Rapid Prototyping Journal, 13, 4, 236–244, 2007.
  • Junghoon H, Kunwoo L, Zhu-hub, Jongwon K, “Hybrid rapid prototyping system using machining and deposition”, Computer-Aided Design, 34, 741-754, 2002.
  • Li X, Choi H, Yang Y, “Micro rapid prototyping system for micro components”, Thin Solid Films, 420, 421, 515–523, 2002.